
Studienarbeit
Fachhochschule Bielefeld

Betreuender Dozent: Professor Dr.-Ing. Lutz Grünwoldt

Asterisk – ein Überblick

Felix J. Ogris (203583)
felix juergen.ogris@fh-bielefeld.de

23. Januar 2007



Inhaltsverzeichnis Inhaltsverzeichnis

Inhaltsverzeichnis

1. Einleitung 4

2. Aufgabenstellung und Szenarien 5

3. Asterisk 8
3.1. Kurzvorstellung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2. Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2.1. Abhängigkeiten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2.2. PostgreSQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2.3. mpg123 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.4. zaptel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.5. Asterisk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.6. ISDN-Karte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3. Komponenten und deren Konfiguration . . . . . . . . . . . . . . . . . . . 11
3.3.1. Dialplan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3.2. Session Initiation Protocol . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.3. IAX / IAX2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.4. Call Detail Record Engine . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.5. MeetMe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.6. Voicemail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.7. Queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.8. Asterisk Manager Interface . . . . . . . . . . . . . . . . . . . . . . 22
3.3.9. Sprachpakete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.10. Festival . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.11. Weitere Dienste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4. Managementtools 25
4.1. gastman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2. Flash Operator Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5. Endgeräte 27
5.1. Softphones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1.1. X-Lite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.1.2. Snom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.1.3. 3CX Phone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.1.4. JackenIAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.1.5. Idefisk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.1.6. Kiax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2. Hardphones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2.1. Grandstream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2.2. Snom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6. AD2Ast 34
6.1. ad2ast sync.pl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.2. ad2ast dial.pl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.3. ad2ast auth.pl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.4. ad2ast xml.pl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

7. Integration in das Labornetz 42

2



Inhaltsverzeichnis Inhaltsverzeichnis

8. Ausblick 44
8.1. Todo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

8.1.1. ENUM & DUNDi . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
8.1.2. AGI Skripte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
8.1.3. Protokolluntersuchung . . . . . . . . . . . . . . . . . . . . . . . . . 44
8.1.4. Asterisk-Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

8.2. Version 1.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

A. Literatur 46

B. Software 47
B.1. Asteriskserver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
B.2. Softphones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

C. PostgreSQL Startskript 48

D. Asterisk Startskript 49

E. AD2Ast 50
E.1. ad2ast auth.pl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
E.2. ad2ast dial.pl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
E.3. ad2ast subs.pl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
E.4. ad2ast sync.pl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
E.5. ad2ast xml.pl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
E.6. ad2ast.sql . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
E.7. ad2ast auth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
E.8. ad2ast.conf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

F. Konfigurationsdateien 69
F.1. cdr pgsql.conf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
F.2. extensions.conf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
F.3. manager.conf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
F.4. meetme.conf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
F.5. modules.conf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
F.6. sip.conf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
F.7. voicemail.conf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3



1 EINLEITUNG

1. Einleitung

Das in dieser Studienarbeit diskutierte Softwarepaket Asterisk stellt eine Telefonanlage
mit zwei grundlegenden Eigenschaften dar: Zum einen wird Asterisk als Open-Source
vertrieben. Es unterliegt der GNU General Public License (GPL) und kann somit von
jedermann weitestgehend frei eingesetzt und modifiziert werden. Zum anderen ist es auf
herkömmlicher PC-Hardware lauffähig, vorzugsweise auf einem x86-kompatiblen System
unter Linux. Für Mark Spencer, den Initiator von Asterisk, waren dies im Jahre 1999
auch die Hauptmotive, sich seine eigene Telefonanlage buchstäblich zu programmieren,
da ihm sowohl die Preise als auch die beschränkten Möglichkeiten damals verfügbarer
Telefonsysteme missfielen. Mit dem Aufkommen von Voice over IP, kurz VoIP, wur-
de auch Asterisk um die Möglichkeit erweitert, über IP-basierte Netze wie Intranets
oder dem Internet zu telefonieren. Dominierend ist hierbei die Kombination aus SIP
und RTP, dem Session Initiation Protocol bzw. Realtime Transport Protocol. Als End-
geräte für Voice over IP kommen entweder sogenannte Softphones, also clientseitige Pro-
gramme, die die Soundkarte bzw. Mikrofon und Kopfhörer eines PCs verwenden, oder
Hardphones in Frage, welche herkömmlichen Telefon ähneln, aber die Gesprächsdaten
über ein IP-Netz versenden. Die Verbindung zu (leitungsvermittelnden) Telefonnetzen
kann über simple ISDN-Steckkarten erfolgen, sofern sie mittels eines CAPI-Treibers oder
über die ISDN4Linux-Schnittstelle vom Betriebssystem unterstützt werden. Allerdings
sind pro solcher Karte maximal 2 simultane Gespräche möglich. Mehrere D-Kanäle bie-
ten spezielle Controller der ebenfalls von Mark Spencer gegründeten Firma Digium, die
ausserdem Interfacekarten für analoge Telefonie vertreibt. Neben der reinen Gateway-
funktion zwischen verschiedenen Audiocodecs und Signalingmethoden bietet Asterisk die
Möglichkeit, Warteschlangen oder Queues, wie sie z.B. in Callcentern verwendet werden,
oder Voicemailboxen einzurichten, welche als Anrufbeantworter fungieren. Der Rufnum-
mernplan oder der Dialplan, welcher die Zuordnung von Telefonnummern zu Endgeräten
vornimmt, ist frei konfigurierbar. Somit gleicht der Dialplan vielmehr einer Routingta-
belle. Da Asterisk als gewöhnlicher Serverdienst auf einem Linuxrechner läuft, kann es
über das sogenannte Asterisk Manager Interface, kurz AMI, sehr einfach angesteuert
werden. Diese Schnittstelle wird in einem Teil der vorliegenden Studienarbeit verwen-
det, um Telefonate zwischen zwei Teilnehmern zu vermitteln. Hierzu wurde eine Software
entwickelt, die Rufnummern, die Benutzern aus einem Active Directory zugeordnet sind,
in eine lokale Datenbank synchronisiert, so dass ein Anwender einen anderen Teilnehmer
komfortabel mittels eines Mausklicks aus einer Weboberfläche heraus anrufen kann.

4



2 AUFGABENSTELLUNG UND SZENARIEN

2. Aufgabenstellung und Szenarien

Ziel war die Demonstration realisierbarer Szenarien und weitergehender Möglichkeiten,
die sich aus dem Einsatz eines Asterisk-Servers ergeben. Hierzu standen mehrere ältere
PCs (Pentium 2 400 MHz, 128 MB RAM, IDE-Fesplatte) mit vorinstalliertem SuSE Li-
nux 10.0 und die Netzwerkinfrastruktur im Labor für Angewandte Informatik und Ma-
thematik der FH Bielefeld zur Verfügung. Aus der im Internet verfügbaren Menge von
Softphones sollten vornehmlich diejenigen verwendet werden, die kostenlos erhältlich und
einsetzbar sind und die zumindest ein uneingeschränktes Telefonieren ermöglichen. Um
Hardware wie ISDN-Karten oder IP-Telefone beschaffen zu können, standen Geldmittel
in Höhe von bis zu 500 Euro zur Verfügung. Ferner sollte eruiert werden, ob und wie eine
sinnvolle Weiterverwendung eines Asterisk-Servers im Labor und in der Veranstaltung
Netzwerke/Verteilte Anwendungen (NW) bzw. im neu geschaffenen CCNA-Kurs möglich
ist. Um die einfache Ansteuerung eines Asterisk-Servers über das Asterisk Manager In-
terface zu zeigen, wurde zusätzlich eine webbasierte Datenbankanwendung erstellt. Diese
speichert Telefonnummern, welche den in einem Active Directory gepflegten Benutzern
zugeordnet sind, in einer lokalen MySQL-Datenbank. Eine Weboberfläche greift auf diese
Datenbank zu, so dass ein Anwender ohne Wählen einer Telefonnummer eine Verbin-
dung von seinem Telefon zu dem des gewünschten Teilnehmers aufbauen kann.
Üblicherweise wird ein Asterisk-Server als Vermittler zwischen einem oder mehreren

Abbildung 1: Das realisierte Szenario: Asterisk als Gateway zwischen IP- und ISDN-
Telefonie

hausinternen und hausexternen Netzen eingesetzt. Prinzipiell stehen 3 Arten von Schnitt-
stellen zur Verfügung: analog, ISDN und IP, so dass sich unter Beachtung aller Kombi-
nationen 49 theoretische Szenarien ergeben (analog und/oder ISDN und/oder IP, sowohl
intern als auch extern). Hieraus wurde das in Abbildung 1 gezeigte Szenario ausgewählt,

5



2 AUFGABENSTELLUNG UND SZENARIEN

da es

• die Demonstration von Hard- und Softphones ermöglicht

• die modellhafte Anbindung an das ISDN-Netzes eines Telekommunikationsbetrei-
bers zeigt

• Asterisk als Protokollumsetzer zwischen der ISDN- und IP-Welt betreibt

• mit moderatem Hardwareaufwand realisierbar ist

• die viel zitierte Konvergenz zwischen Telefon- und Computernetzen zeigt, da hausin-
tern nur noch eine gemeinsame Netzwerkinfrastruktur (hier: IP über Ethernet)
benötigt wird.

Abbildung 2: Grandstream GXP-2000

Abbildung 3: AVM FRITZ!Card PCI

6



2 AUFGABENSTELLUNG UND SZENARIEN

Zur Simulation eines ISDN-Netzes stand im Labor ein ISDN-Switch der Firma Agfeo
zur Verfügung. Dieser wurde in Zusammenarbeit mit dem Laboringenieur Herrn Man-
fred Fingberg so konfiguriert, dass an Port 11 und Port 12 ein ISDN-Telefon bzw. der
Asterisk-Server betrieben werden konnten.
Analoge Telefonie wurde nicht weiter beachtet, da es sich um eine rückläufige Tech-
nik handelt und da sie nur mittels spezieller Interfacekarten (s. Kapitel 1) realisieren
lässt. Ebenfalls wurde darauf verzichtet, einen internen S0-Bus zu betreiben, um so ei-
ne eventuell vorhandene ISDN-Installation direkt an den Asterisk-Server anzuschliessen.
Hierfür wäre eine ISDN-Steckkarte nötig, deren Chipsatz im sogenannten NT-Modus ar-
beitet und sich gegenüber ISDN-Telefonen wie eine Vermittlungsstelle verhält.
Um das geforderte Szenario realisieren zu können, wurden 2 IP-Telefone vom Typ Grand-
stream GXP-2000 (Abbildung 2) sowie eine ISDN-Karte AVM FRITZ!Card PCI v2.1
(Abbildung 3) bestellt.

7



3 ASTERISK

3. Asterisk

3.1. Kurzvorstellung

Asterisk läuft als normaler Serverdienst auf einem Linuxrechner. In einer Laborumge-
bung ist der Betrieb mit Superuserrechten, sprich root-Rechten, zu empfehlen. Für den
Einsatz auf einem Produktivsystem sollte hingegen ein eigener Benutzeraccount für den
Asterisk-Daemon eingerichtet werden, um so die Kompromittierung des Servers durch
einen Fehler in einem Asterisk-Modul zu vermeiden. Allerdings muss bei Verwendung
eines eigenen Benutzeraccounts gewährleistet sein, dass dieser auf alle Konfigurations-
dateien, Spoolverzeichnisse und auf Gerätedateien im Verzeichniss /dev Zugriffsrechte
hat. Der Server wird entweder beim Hochfahren des Systems über ein entsprechendes
Skript in /etc/init.d bzw. /etc/rc.d (hier variiert jede Linux-Distribution) oder auf
der Konsole durch den direkten Aufruf von asterisk gestartet, welches im Verzeichnis
/usr/sbin liegt. Konfigurationsdateien werden in /etc/asterisk erwartet. Die eigentli-
chen Funktionen des Servers sind in dynamische Bibliotheken, sogenannte shared objects
(meist mit der Dateiendung .so) ausgelagert. Diese sind unterhalb des Verzeichnisses
/usr/lib/asterisk gespeichert. Somit können zum einen bestimmte Funktionen kom-
plett ausgeblendet werden, indem man in der Datei /etc/asterisk/modules.conf einen
Eintrag wie noload => modul.so hinzufügt. Zum anderen kann Asterisk so ohne erneu-
te Kompilierung um eigene Routinen erweitert werden. Zusätzlich werden die Verzeich-
nishierarchien /var/lib/asterisk und /var/spool/asterisk benötigt. Unterhalb von
/var/lib/asterisk werden u.a. Wartemelodien, Ansagetexte und eigene Skripte hinter-
legt, während /var/spool/asterisk temporäre Dateien aufnimmt, wie z.B. noch nicht
abgerufene Nachrichten einer Voicemailbox. Die Kommunikation mit ISDN-Karten er-
folgt entweder über einen CAPI-Treiber bzw. einer Gerätedatei wie /dev/ttyI0 oder,
sofern es sich um eine (Primärmultiplex-)Karte der Firma Digium handelt, mittels eines
Treibers aus dem Zaptel -Paket, welches ebenfalls unter der GPL vertrieben wird.

3.2. Installation

3.2.1. Abhängigkeiten

Die verwendete Linux-Distribution SuSE 10.0 wird ohne Asterisk-Paket geliefert. Eine
Installation über das Softwareverwaltungswerkzeug YaST war daher nicht möglich, so
dass eine Übersetzung aus den Quelltexten unumgänglich war. Zuvor wurden der Daten-
bankserver PostgreSQL, der MP3-Player mpg123 und die Zaptel -Treiber ebenfalls kom-
piliert und installiert, da sonst der Übersetzungsvorgang von Asterisk das Fehlen jener
Programme bemerkt und z.B. das Modul zur Anbindung einer PostgreSQL-Datenbank
(cdr pgsql.so) nicht übersetzt. Alle weiterhin benötigten Werkzeuge lassen sich über
YaST installieren. Dies sind:

• der GNU C Compiler gcc

• Headerdateien und weitere Bibliotheken der Systemlibrary glibc-devel

• den Sourcecode des Linuxkernels kernel-devel

• die Readline-Bibliothek readline und ihre Headerdateien readline-devel

• openssl und openssl-devel

• ncurses und ncurses-devel

8



3 ASTERISK 3.2 Installation

Abbildung 4: YaST

• zlib und zlib-devel

• das Programm doxygen, um die Dokumentation aus dem Asterisk-Quelltext erstel-
len zu können (vgl. JavaDoc)

Natürlich sollten alle vorgeschlagenen Abhängigkeiten ebenfalls installiert werden. Es
empfiehlt sich, für die einzelnen Installationsschritte ein separates Verzeichnis namens
src o.ä. im Homeverzeichnis anzulegen und dort alle Quellpakete abzuspeicheren.

3.2.2. PostgreSQL

Das Entpacken, Übersetzen und Installieren von PostgreSQL gelingt unter Verwendung
folgender Befehle:

tar -xjf postgresql-8.1.5.tar.bz2
cd postgresql-8.1.5
./configure --with-openssl --enable-integer-datetimes
make
make install

Danach wird ein eigener Account für den Datenbankserver eingerichtet und ein Verzeich-
nis mit passenden Zugriffsrechten für die eigentlichen Daten angelegt:

useradd -c "PostgreSQL server" -s /bin/false -d /usr/local/pgsql \
-g daemon -r pgsql

mkdir /usr/local/pgsql/data
chown pgsql /usr/local/pgsql/data
chmod 700 /usr/local/pgsql/data

Mit dem Programm initdb wird die Datenbank initialisiert. Dieses muss unter dem
Benutzeraccount geschehen, mit dessen Rechten später der PostgreSQL-Server laufen
soll, hier pgsql. Durch die Kommandozeilenoption -W wird man zusätzlich aufgefordert,
ein Masterpasswort für den Zugriff auf die Datenbank zu vergeben:

9



3 ASTERISK 3.2 Installation

sudo -u pgsql -- /usr/local/bin/initdb -U pgsql -W \
/usr/local/pgsql/data

Damit PostgreSQL beim Systemstart hochfährt, kopiert man das eigens erstellte Skript
pgsql (s. Anhang C in das Verzeichnis /etc/init.d und verknüpft es per Aufruf von
chkconfig -a pgsql im Startprozess des Linuxsystems. Nach einem Reboot oder dem
Aufruf von /etc/init.d/pgsql start sollte nun der PostgreSQL-Server laufen. Für
den Einsatz mit Asterisk ist es sinnvoll, einen eigenen Datenbankuser samt eigener Da-
tenbank anzulegen. Hierzu verbindet man sich mit dem Befehl
psql -d template1 -U pgsql und unter Eingabe des oben vergebenen Passwortes auf
den PostgreSQL-Server und setzt nacheinander die Anweisungen

CREATE USER asterisk PASSWORD ’obelix’;

und

CREATE DATABASE astdb OWNER asterisk;

ab. Per Eingabe von \q verlässt man den PostgreSQL-Client wieder. Aus Sicherheits-
gründen sollte der Datenbankserver weitestgehend abgesichert werden. Hierzu lässt man
in der Datei /usr/local/pgsql/data/pg hba.conf als einzige nicht auskommentierte
Zeile folgende übrig:

local all all md5

Somit ist sichergestellt, dass Verbindungen zum PostgreSQL-Server nur über einen lo-
kalen Unix-Socket hergestellt werden dürfen und sich User per in der Datenbank hinter-
legtem Passwort authentifizieren müssen.

3.2.3. mpg123

Die Installation des Kommandozeilen-MP3-Players mpg123 gestaltet sich recht einfach.
Es genügen folgende Aufrufe:

tar -xjf mpg123-0.61.tar.bz2
cd mpg123-0.61
./configure
make
make install

3.2.4. zaptel

Asterisk benötigt für diverse Dienste wie z.B. Konferenzräume ein Timing-Device, wie es
von Digium-basierten Interfacekarten bereitgestellt wird. Verfügt der Rechner nicht über
solche Interfacekarten, emuliert das Kernelmodul ztdummy unter Verwendung des USB-
Controllers ein derartiges Timing-Device. Die Installation des Zaptel-Treiberpaketes ist
relativ einfach:

tar -xzf zaptel-1.2.11.tar.gz
cd zaptel-1.2.11
make
make install config

Nach einem Reboot oder dem Aufruf von /etc/init.d/zaptel start sollte ein Zaptel-
Kernelmodul wie z.B. ztdummy geladen worden sein, was sich mit dem Aufruf von lsmod
prüfen lässt.

10



3 ASTERISK 3.3 Komponenten und deren Konfiguration

3.2.5. Asterisk

Nach den oben ausgeführten Vorbereitungen beschränkt sich die Installation von Asterisk
auf wenige Schritte. Nach dem Entpacken des heruntergeladenen Quellcodepaketes und
dem Wechsel in das daraus neu erstellte Verzeichnis per Aufrufen von

tar -xzf asterisk-1.2.13.tar.gz
cd asterisk-1.2.13

genügt der folgende Befehlsdreisatz, um alle notwendigen Komponenten inklusive einer
Beispielkonfiguration zu installieren:

make
make install
make samples

Die Dokumentation des Quellcodes wird über den Aufruf von make progdocs instal-
liert. Da Asterisk wie PostgreSQL kein eigenes Startskript für SuSE Linux mitbringt,
wird die selbst erstellte Datei asterisk (s. Anhang D) nach /etc/init.d kopiert. Den
obligatorischen Aufruf von chkconfig -a asterisk, um Asterisk im Startprozess des
Linuxsystems zu verankern, sollte man jedoch erst nach Abschluss aller Konfigurations-
arbeiten (s. Kapitel 3.3) vornehmen.

3.2.6. ISDN-Karte

Die Installation der ISDN-Karte gestaltet sich sowohl hardware- als auch softwaretech-
nisch relativ einfach. Im Rechner wird lediglich ein freier 32Bit PCI-Steckplatz benötigt.
Über Yast werden die beiden Pakete avmfritzcapi und km fritzcapi installiert, um
Treiber bzw. Kernelmodul dem System hinzuzufügen. Nach einem Reboot sollten ent-
sprechende Einträge im Kernellog (Ausgabe von dmesg) zeigen, dass eine FRITZ!Card
erkannt wurde.

3.3. Komponenten und deren Konfiguration

Asterisk besteht aus diversen einzeln konfigurierbaren Komponenten. Jeder Teil des
Telefonieservers wird mittels einer eigenen, im Klartext lesbaren Datei im Verzeichnis
/etc/asterisk gesteuert. Durch den Aufruf von make samples während der Installati-
on werden alle notwendigen Dateien erstellt und mit einer Bespielkonfiguration versehen.
Diese können als Grundlage für eigene Anpassungen dienen. In der Regel wird man jene
Beispiele aber umbenennen (z.B. mv sip.conf sip.conf.orig) und sie beim Anlegen
von neuen, eigenen Steuerdateien nur noch als kurze Befehlsreferenz verwenden.
Während der Konfigurationsphase ist es empfehlenswert, Asterisk im Debugmodus (s.
Abbildung 5) direkt auf der Konsole zu starten. Dies erreicht man durch Eingabe von
asterisk -cdfvvv. Somit wird zum einen der Startprozess des Linuxsystems nicht durch
ein eventuell fehlerhaft konfiguriertes Asterisk beeinträchtigt. Zum anderen kann man so
etwaige Fehler und Hinweise beim Hochfahren und Betrieb des Telefonieservers direkt,
sprich ohne Umwege über eine Logdatei, erkennen und beheben. Für den Produktivein-
satz sollte der (korrekt konfigurierte) Asteriskserver auf jeden Fall vom Betriebssystem
gestartet werden. Mit dem Kommando asterisk -r kann man sich dann auf einen
schon laufenden Server verbinden und analog zu einer Debugsitzung Befehle an Asterisk
absetzen.

11



3 ASTERISK 3.3 Komponenten und deren Konfiguration

Abbildung 5: Asterisk im Debugmodus auf der Konsole

3.3.1. Dialplan

Das Herzstück einer Asteriskinstallation ist der sogenannte Dialplan. Mit ihm wird be-
stimmt, ob und wohin ein Teilnehmer beim Anwählen einer Telefonnummer weitergeleitet
wird. Der Dialplan ist daher mit einer (statischen) Routingtabelle vergleichbar. Er wird
in der Datei /etc/asterisk/extensions.conf konfiguriert und besteht hauptsächlich
aus sequentiellen Zuordnungen von Telefonnummern zu bestimmten Aktionen. Formal
muss eine solche Zuordnung immer wie folgt strukturiert sein:

exten => <Durchwahl>,<Priorität>,<Aktion>

Zum Beispiel ordnet folgende Zuweisung der Durchwahl 1234 die Aktion Hangup() zu,
die - ihrem Namen entsprechend - das Telefonat beendet:

exten => 1234,1,Hangup()

Die Priorität (in obigem Beispiel ist sie 1) gibt an, in welcher Reihenfolge die einer
Durchwahl zugeordneten Aktionen ausgeführt werden sollen:

exten => 12345,1,MP3Player(/mp3/unbekannte_nummer.mp3)
exten => 12345,2,Hangup()

Ruft hier ein Teilnehmer die Nummer 12345 an, so würde ihm zunächst vom Aste-
riskserver die MP3-Datei /mp3/unbekannte nummer.mp3 vorgespielt und anschliessend
das Telefonat beendet werden. Um Einschübe zwischen zwei Aktionen einer Durchwahl
ohne müssiges Inkrementieren aller nachfolgenden Prioritäten zu ermöglichen, kann statt
expliziter Prioritäten auch der Platzhalter n verwendet werden. Die Abfolge der Aktio-
nen ergibt sich somit aus der Reihenfolge, in der sie im Dialplan aufgeführt sind. Also
ist nachfolgendes Beispiel zu obigem äquivalent:

exten => 12345,1,MP3Player(/mp3/unbekannte_nummer.mp3)
exten => 12345,n,Hangup()

12



3 ASTERISK 3.3 Komponenten und deren Konfiguration

Auf jeden Fall ist für jede Durchwahl als Startpunkt eine Aktion mit der Priorität 1
erforderlich. Telefonnummern können wie in den oben gezeigten Beispielen als festste-
hende Folge von Ziffern oder aber als Ausdruck mit Platzhaltern formuliert werden.
Hierbei steht ein X für die Ziffern 0 bis 9, Z für 1 bis 9, N für 2 bis 9 und ein Punkt für
ein oder mehrere beliebige Zeichen. Eine Ziffernfolge in eckigen Klammern steht stell-
vertretend für genau eine Ziffer aus jener Folge. Derartige Muster müssen im Dialplan
mit einem anführenden Unterstrich deklariert werden. Um zum Beispiel zu verhindern,
dass Telefonnummern mit vorangestellter Null angewählt werden können, wäre folgendes
möglich:

exten => _0.,1,Hangup()

Das nächste Beispiel unterbindet das Wählen der in Deutschland üblichen Notrufnum-
mern, sprich 110 und 112:

exten => _11[02],1,Hangup()

Neben der schon vorgestellten Funktion Hangup(), welche das Telefonat beendet, kennt
Asterisk unter anderem folgende Aktionen:

MP3Player(Datei) spielt dem Anrufer die angegebene Datei im MP3-Format vor

Playback(Datei) wie MP3Player(), jedoch muss die Datei in einem nativ von Asterisk
unterstützten Format wie µ-Law, A-Law, GSM o.ä. vorliegen

Dial(Kanal(&Kanal)(&Kanal) ... (,Wartezeit [s])) leitet den Anrufer zu den ange-
gebenen Kanälen, sprich Endgeräten weiter. Wird von diesen nicht eines nach der
optional genannten Wartezeit abgehoben, geht Asterisk zur nächsten Aktion für
diese Durchwahl weiter.

Voicemail(Mailboxnummer) leitet zur angegebenen Voicemailbox um, so dass der Anru-
fer nach einem Begrüssungstext (”Bitte hinterlassen Sie ihre Nachricht nach dem
Ton...“) eine Sprachnotiz aufsprechen kann. Siehe auch Kapitel 3.3.6

VoiceMailMain(Mailboxnummer) leitet zur angegebenen Voicemailbox, um so dass der
Anrufer die aufgesprochenen Nachrichten abhören und ggf. löschen kann

MeetMe(Konferenzraumnummer) leitet den Anrufer zum angegebenen Konferenzraum
weiter. Siehe auch Kapitel 3.3.5

Answer() veranlasst Asterisk, das Telefonat anzunehmenen und es selbst mit einer Ak-
tion wie z.B. Playback() oder MeetMe() zu beantworten anstatt es per Dial()
auf einen anderen Kanal weiterzuleiten

Page(Kanal(&Kanal)(&Kanal) ...) verbindet den Anrufer mit allen angegebenen Kanälen.
Beim Anrufer wird für die Dauer des Gespräches der Hörer deaktiviert, bei den
angerufenen Teilnehmern das Mikrofon

System(Befehl) führt den angegebenen (Linux-)Befehl aus

Ein Kanal besteht immer aus einem Protokoll und einer Rufnummer oder sonstigen
Teilnehmerkennung, zum Beispiel SIP/freund. Verwendet man diesen Kanal in einem
Dial-Befehl, würde Asterisk versuchen, per SIP einen Teilnehmer namens freund zu errei-
chen. Natürlich muss dieser Teilnehmer in der Konfigurationsdatei sip.conf (s. Kapitel
3.3.2) eingerichtet sein.

13



3 ASTERISK 3.3 Komponenten und deren Konfiguration

Im Dialplan können Aktionen nicht nur anhand der gewünschten Zielnummer, sondern
auch unter Berücksichtigung der Herkunft des Anrufes ausgeführt oder gar gezielt gefil-
tert werden. Hierzu gibt es sogenannte Kontexte. Diese werden z.B. in der Datei sip.conf
einem oder mehreren Teilnehmern zugeordnet, welche ihre eigene Sicht auf den Dialplan
erhielten. Weist man z.B. einem SIP-Teilnehmer den Kontext darfnix zu, so könnte
man ihm mit folgendem Dialplan alle abgehenden Anrufe untersagen:

[darfnix]
exten => _.,1,Hangup()

[default]
...

Ein default-Kontext wird von Asterisk immer gefordert. Zur Vermeidung von Red-
undanzen kann ein Kontext einen anderen einbinden; das entsprechende Schlüsselwort
hierfür lautet include:

[technik]
include => ortsgespraeche
include => ferngespreache

[vertrieb]
include => ortsgespraeche

In obigem Beispiel dürften alle zum Kontext technik gehörenden Teilnehmer Orts- und
Ferngespräche führen (sofern sich eben hinter diesen Kontexten entsprechende Aktionen
verbergen), während der Vertrieb nur innerörtliche Telefonate führen darf.
Als weitere Erleichterung können im Dialplan Variablen verwendet werden. Wird z.B.
der Kanal SIP/teilnehmer1 in mehreren (Dial-)Aktionen verwendet, so ist es sinnvoll,
statt dessen eine aussagekräftige Variable zu vergeben:

[globals]
TEILNEHMER1=SIP/teilnehmer1

Der Bezeichner TEILNEHMER1 kann nun in einem Dial-Befehl verwendet werden:

exten => 1234,1,Dial(${TEILNEHMER1}, 20)

Eine besondere Bedeutung hat die vordefinierte Variable EXTEN. In ihr hält Asterisk die
aktuelle Durchwahl fest, so dass folgende Zeilen äquivalent sind:

exten => 1234,1,Dial(SIP/1234, 20)
exten => 1234,1,Dial(SIP/${EXTEN}, 20)

Zusätzlich kann man nur einen Teil dieser Variablen auswerten lassen:

exten => _5000XXXX,1,VoiceMailMain(${EXTEN:4})

In obigem Beispiel werden die ersten 4 Ziffern der angewählten Telefonnummer (also
5000) abgeschnitten und die nur verbleibenden würden der Funktion VoiceMailMain
übergeben. Gibt man den Index als negative Zahl an, z.B. ${EXTEN:-2}, werden hingegen
die letzten 2 Ziffern geliefert.

14



3 ASTERISK 3.3 Komponenten und deren Konfiguration

3.3.2. Session Initiation Protocol

Die Kombination aus Session Initiation Protocol und Realtime Transport Protocol (RTP)
hat derzeit im VoIP-Umfeld die grösste Verbreitung. Das SIP dient lediglich als Signaling-
Protokoll zum Aufbau einer Verbindung zwischen den Teilnehmern, ähnlich dem D-
Kanal im ISDN. RTP hingegen wird als Container für die eigentlichen Audiodaten ver-
wendet, die per µ-Law, A-Law, GSM usw. codiert sind. Während RTP ein binäres Pro-
tokoll darstellt, ist SIP als Klartextprotokoll dem Hypertext Transport Protocol (HTTP),
welches i.d.R. zum Abruf von Webseiten verwendet wird, sehr ähnlich. Allerdings wur-
de eine Unart des File Transfer Protocol (FTP) übernommen: SIP hinterlegt in den
Nutzdaten die IP-Adresse, auf der ein Client Verbindungen (z.B. für RTP-Ströme) an-
nehmen kann. Dies führt besonders bei Verwendung von Network Address Translation
(NAT) auf Routern zwischen zwei SIP-Teilnehmern zu Problemen, da zwar die Adres-
sen der IP-Pakete geändert werden, nicht aber die in der Payload. Asterisk bietet daher
für die Konfiguration eines SIP-Clients die Option nat = yes an, mit der jegliche in
SIP-Paketen angegeben IP-Adressen ignoriert werden und nur die tatsächliche Absen-
deadresse des Clients verwendet wird. In der Datei /etc/asterisk/sip.conf werden
sämtliche SIP-Verbindungen definiert. Sie ist syntaktisch ähnlich zum Dialplan. Jedoch
definieren Bezeichner in eckigen Klammern keine Kontexte, sondern einzelne SIP-Clients.
Eine besondere Bedeutung hat der mit [general] eingeleitete Abschnitt, mit dem glo-
bale Einstellungen vorgenommen werden:

[general]
bind=0.0.0.0
port=5060
disallow=all
allow=ulaw
allow=alaw
language=de

Die Parameter bind und port geben an, auf welcher IP-Adresse und welchem Port der
SIP-Server lauschen soll. Hierbei stehen 0.0.0.0 und 5060 für alle Netzwerkschnitt-
stellen des Systems bzw. für den üblicherweise verwendeten SIP-Port. Die Direktiven
disallow und allow verbieten bzw. erlauben die Verwendung von speziellen Audioco-
decs, so dass im obigen Beispiel lediglich µ- und A-Law zugelassen sind. Zudem wird
Deutsch als Sprache für Menüs wie z.B. die Ansage einer Voicemailbox festgelegt. Hierzu
muss natürlich das entsprechende deutsche Sparchset installiert sein (s. Kapitel 3.3.9),
sonst werden die mit Asterisk installierten englischen Texte verwendet. Die Definition
eines SIP-Clients geschieht wie folgt:

[teilnehmer1]
context=default
type=friend

Der Bezeichner teilnehmer1 kann nun als Teil eines Kanals im Dialplan verwendet wer-
den, z.B. in der Funktion Dial(SIP/teilnehmer1, 20). Der Kontext bestimmt, welchen
Teil des Dialplans dieser SIP-Client sieht, wie im Kapitel 3.3.1 erläutert. Mit dem Para-
meter type wird bestimmt, wie der Teilnehmer behandelt wird. Folgende drei Optionen
sind möglich:

user Teilnehmer kann nur anrufen, nicht aber angerufen werden

peer Teilnehmer kann nur angerufen werden, nicht aber anrufen

15



3 ASTERISK 3.3 Komponenten und deren Konfiguration

friend Kombination aus user und peer

Die Authentifizierung des Clients erfolgt per Benutzername-/Passwortkombination, wo-
bei der Username nicht zwingend dem Bezeichner für den SIP-Client (hier: teilnehmer1)
entsprechen muss:

username=teilnehmer_1
secret=streng_geheim

Ferner gibt es die Optionen permit und deny, mit denen die IP-Adresse oder der Netz-
bereich eingeschränkt werden kann, aus dem sich der SIP-Client verbinden darf:

deny=0.0.0.0/0
permit=192.168.1.0/24
host=dynamic

Somit darf sich dieser SIP-Client nur aus dem IP-Bereich 192.168.1.0 bis 192.168.1.255
am Server anmelden. Mit der Option host=dynamic wird erzwungen, dass sich der Client
am Server registrieren muss. Viele IP-Telefone können noch nicht abgehörte Nachrichten
auf der Voicemailbox mittels einer LED oder einem Hinweisfeld anzeigen. Hierzu muss
allerdings dem SIP-Teilnehmer eine derartige Mailbox zugeordnet sein:

mailbox=1234

Die angegebene Voicemailbox (hier: 1234) muss natürlich in der Datei voicemail.conf
eingerichtet sein (s. Kapitel 3.3.6). Mit dem Parameter callerid können Name und Te-
lefonnummer, die bei einem angerufenen Teilnehmer im Display erscheinen, vorgegeben
werden:

callerid=Vorname Nachname <4711>

Mit den erläuterten SIP-Optionen kann ein einfaches Laborszenario eingerichtet werden.
Die Vorstellung aller Parameter würde an dieser Stelle jedoch den Rahmen sprengen und
wäre letztendlich nur eine Abschrift von Quellen wie Meggelen u. a. (2005).

3.3.3. IAX / IAX2

Das InterAsterisk eXchange oder kurz IAX ist ein binäres, quelloffenes Protokoll, wel-
ches Mark Spencer ursprünglich zur Verbindung von Asterisk-Servern untereinander
entworfen hat. Es umgeht die Schwächen von SIP/RTP wie Probleme bei Verwendung
von NAT, indem es nur einen UDP-Port verwendet und keine IP-Adressen im Daten-
strom einbindet. Da die Version 2 dieses Protokolls das ursprüngliche IAX vollständig
verdrängt hat, werden heutzutage IAX und IAX2 synonym verwendet. Es existieren in-
zwischen einige Softwareclients für IAX, eine Unterstützung durch Hardphones ist kaum
gegeben.
Die Konfiguration von IAX unter Asterisk gleicht der von SIP. Zu Beginn der Datei
/etc/asterisk/iax.conf wird ebenfalls ein Abschnitt mit generischen Einstellungen
erwartet:

[general]
bindport=4569
bindaddr=0.0.0.0
language=de
disallow=all
allow=gsm
allow=ulaw
allow=alaw

16



3 ASTERISK 3.3 Komponenten und deren Konfiguration

Die Kommunikation mit dem IAX-Server erfolgt über UDP-Port 4569; zusätzlich wird
die aus dem Mobilfunk bekannte GSM-Codecfamilie zugelassen. Die Definition einzelner
IAX-Clients ist identisch zu der für SIP-Clients:

[teilnehmer2]
context=default
type=friend
username=teilnehmer2
secret=streng_geheim
host=dynamic
deny=0.0.0.0/0.0.0.0
permit=192.168.0.0/24
mailbox=5678
callerid=Vorname Nachname <5678>

Über die Optionen deny bzw. permit kann auch hier eine IP-Filterliste realisiert werden
und somit sehr genau bestimmt werden, aus welchen Netzen sich teilnehmer2 verbinden
darf.

3.3.4. Call Detail Record Engine

Mit Hilfe der Call Detail Record Engine (CDR) können Metadaten für jedes Gespräch
aufgezeichnet werden, so dass z.B. für Abrechnungszwecke festgestellt werden kann, wer
wann mit wem wie lange telefoniert hat oder - falls der Angerufene nicht abgenommen
hat - telefonieren wollte. Per default ist CDR aktiviert. Explizit wird es in der Datei
/etc/asterisk/cdr.conf im Abschnitt [general] ein- oder ausgeschaltet:

[general]
enable=yes

Nach einer Standardinstallation loggt Asterisk Verbindungsdaten in zwei Klartextdatei-
en: /var/log/asterisk/cdr-csv/Master.csv und
/var/log/asterisk/cdr-custom/Master.csv. Diese kommaseparierten Listen (comma
separated values, kurz csv) lassen sich mit Programmen wie OpenOffice Calc auslesen.
Komfortabler ist der Einsatz einer SQL-Datenbank wie PostgreSQL. Mit dem Skript
postgres cdr.sql im Unterverzeichnis contrib/scripts des Asterisk-Quellcodes wird
zunächst eine Tabelle namens cdr angelegt. Dieses Skript wird wie folgt dem PostgreSQL-
Client psql übergeben:

psql -d astdb -U asterisk -f postgres_cdr.sql

Nach Eingabe des in Kapitel 3.2.2 vergebenen Passwortes für den Asterisk-User steht die
Tabelle cdr zur Verfügung. Mit der SQL-Anweisung SELECT * FROM cdr im Programm
psql (Aufruf wie gewohnt per psql -d astdb -U asterisk) erhält man die noch leere Tabelle
samt Feldnamen. Folgene Werte werden von Asterisk aufgezeichnet:

AcctId ein für jeden Datensatz eindeutiger numerischer Schlüssel, der von der Daten-
bank vergeben wird

calldate Datum und Zeitpunkt, an dem der Datensatz eingetragen wurde, gemeinhin
Datum und Uhrzeit des Gesprächsendes

clid CallerID (Name und Nummer) des Anrufenden

17



3 ASTERISK 3.3 Komponenten und deren Konfiguration

src CallerID (nur Nummer) des Anrufenden

dst die gewählte Nummer bzw. Extension

dcontext der Dialplan-Kontext

channel der (temporäre) Kanal, der dem anrufenden Gerät zugeordnet wurde

dstchannel der Kanal des angerufenen Teilnehmers

lastapp die zuletzt vom Dialplan während des Gespräches ausgeführte Funktion, z.B.
Dial() oder Hangup()

lastdata die Parameter, die der unter lastapp aufgeführten Funktion übergeben wurden

duration Gesprächsdauer in Sekunden vom Beenden des Wählens bis zum Auflegen eines
Teilnehmers

billsec Gesprächsdauer in Sekunden vom Abheben des Angerufenen bis zum Auflegen
eines Teilnehmers

disposition Kurzinfo über den Exitcode des Gespräches, mögliche Werte sind ANSWERED,
BUSY, NO ANSWER oder FAILED

amaflags Flag für Abrechnungszwecke (vgl. Automatic Message Accounting); wird ent-
weder durch den Parameter amaflags in der sip.conf u.ä. oder im Dialplan durch
die Funktion SetAMAFlags() gesetzt werden. Mögliche Werte sind default, omit,
billing und documentation

accountcode wie amaflags ebenfalls für Abrechnungszwecke, jedoch handelt es sich um
einen frei setzbaren numerischen Wert

uniqueid ein für jeden Datensatz eindeutiger numerischer Schlüssel, der von Asterisk
vergeben wird

userfield ein beliebig verwendbares Feld, welches z.B. durch die Funktionen
AppendCDRUserField() oder SetCDRUserField() belegt werden kann

Asterisk erwartet die Verbindungsinformationen für die PostgreSQL-Datenbank in der
Datei /etc/asterisk/cdr pgsql.conf. Hier müssen Hostname, ggf. Portnummer, User-
name, Passwort und Datenbank- und Tabellenname hinterlegt sein:

[global]
hostname=/tmp
port=5432
dbname=astdb
password=obelix
user=asterisk
table=cdr

PostgreSQL kann nicht nur über einen Internetsocket, sondern auch über einen loka-
len Unix-Socket angesprochen werden, was einen kleinen Geschwindigkeitsvorteil bringt.
Hierzu gibt man dem Parameter hostname nicht einen tatsächlichen Hostnamen oder
eine IP-Adresse, sondern den Namen des Verzeichnisses, in dem der zugehörige Unix-
Socket liegt. Bei einer Standardinstallation von PostgreSQL ist dies /tmp. Natürlich

18



3 ASTERISK 3.3 Komponenten und deren Konfiguration

müssen Anwendung und Datenbankserver hierbei auf der selben Maschine laufen. Ab-
schliessend sollte noch das Logging in die CSV-Dateien unterbunden werden. Dieses
gelingt nur, wenn man die entsprechenden Module cdr csv.so und cdr custom.so in
der Datei /etc/asterisk/modules.conf sperrt:

[modules]
noload => cdr_csv.so
noload => cdr_custom.so

3.3.5. MeetMe

Mit der Anwendung MeetMe werden in Asterisk virtuelle Konferenzräume realisiert. In
diese können sich Teilnehmer einwählen und wie in einer realen Konferenz miteinan-
der kommunizieren. Die Einrichtung ist relativ einfach. MeetMe-Räume werden anhand
einer Zahl identifiziert, i.d.R. die Telefonnummer oder Durchwahl, unter der sie zu errei-
chen sind. In der Konfigurationsdatei /etc/asterisk/meetme.conf wird im Abschnitt
[rooms] der Konferenzraum mit der Nummer 2342 wie folgt angelegt:

[rooms]
conf => 2342

Ein solcher Raum kann zusätzlich mit einem Passwort geschützt werden:

conf => 2342,4711

Ein Anrufer müsste nun auf seinem Telefon die Ziffernfolge 4711 eingeben, um der Kon-
ferenz beitreten zu können. Im Dialplan steht die Funktion MeetMe() zur Verfügung, um
einer Durchwahl einen Konferenzraum zuordnen zu können.

exten => 2342,1,Answer()
exten => 2342,n,MeetMe(2342)
exten => 2342,n,Hangup()

Der Funktion MeetMe() können unter anderem folgende, zusätzliche Flags übergeben
werden:

m Monitormodus, bei dem der Anrufer nur zuhören, nicht aber selbst reden kann

t Talkmodus, bei dem der Anrufer nur reden, aber nicht zuhören kann

i der Anrufer muss seinen Namen nennen, mit dem anschliessend den anderen Teil-
nehmern verkündet wird, dass ein weiterer Benutzer die Konferenz betreten bzw.
verlassen hat

r Recordingmodus, der ein Aufzeichnen der Konferenz als WAV-Datei im Verzeichnis
/var/lib/asterisk/sounds ermöglicht

Um eine Konferenz aufzuzeichnen, bei der sich die Teilnehmer mit Namen identifizieren
müssen, wäre also folgender Eintrag im Dialplan nötig:

exten => 2342,n,MeetMe(2342,ir)

19



3 ASTERISK 3.3 Komponenten und deren Konfiguration

3.3.6. Voicemail

Asterisk bietet die Möglichkeit, für jeden Benutzer einen passwortgeschützten Anrufbe-
antworter einzurichten. Optional können neue Nachrichten per Email verschickt werden.
Voicemailboxen werden in der Datei /etc/asterisk/voicemail.conf konfiguriert. Dort
legt man im Abschnitt [general] das Format fest, in dem Nachrichten aufgezeichnet
und ggf. verschickt werden:

[general]
format=wav

Audiodateien im WAV-Format benötigen zwar mehr Speicherplatz als z.B. GSM-codierte
Daten, sind aber auf den allermeisten Betriebssystemen problemlos abspielbar. Die De-
finition der einzelnen Mailboxen gestaltet sich ebenfalls relativ einfach:

[default]
1234 => 0815,Vorname Nachname,user@domain.tld

Die Voicemailbox 1234 ist hier mit dem Passwort 0815 geschützt. Der optionale Name
lässt lediglich die Anrede in den Emails, die bei neuen Nachrichten an user@domain.tld
versendet werden, persönlicher aussehen. Eine einfache Mailbox ohne Emailversand lässt
sich mit der folgenden spartanischen Konfigurationszeile definieren:

6789 => 6969

Die Voicemailbox 6789 wäre somit per Passwort 6969 gesichert. Im Dialplan stehen die
Funktionen Voicemail() und VoiceMailMain() zum Aufsprechen bzw. zum Abhören
eines Anrufbeantworters zur Verfügung. Meist soll eine Voicemailbox besprochen werden,
wenn ein angerufener Teilnehmer nach einer gewissen Zeit nicht abnimmt:

exten => 1234,1,Dial(SIP/teilnehmer1, 20)
exten => 1234,n,Voicemail(1234)
exten => 1234,n,Hangup()

Im Beispiel ist der Kanal SIP/teilnehmer1 unter der Durchwahl 1234 erreichbar. Wird
das zugehörige Endgerät nicht nach 20 Sekunden abgenommen, kann der Anrufer auf
die Mailbox 1234 sprechen. Das Abhören der Nachrichten geschieht mittels der Funktion
VoiceMailMain():

exten => 30001234,1,Answer()
exten => 30001234,n,VoiceMailMain(1234)
exten => 30001234,n,Hangup()

Wählt man die Nummer 30001234 und gibt anschliessend über die Tastatur des Telefons
das korrekte Passwort ein (hier: 0815), so gelangt man in das Menü der Mailbox 1234,
welches dem Benutzer alle Optionen erläutert. So können mit der Taste 1 neue Nachrich-
ten abgehört und per Druck auf Taste 7 gelöscht werden. Damit man im Dialplan nicht
jede Voicemailbox verankern muss, bietet sich die Verwendung der Variablen EXTEN an:

exten => _3000XXXX,1,Answer()
exten => _3000XXXX,n,VoiceMailMain(${EXTEN:4})
exten => _3000XXXX,n,Hangup()

Somit wird der Funktion VoiceMailMain() jeweils die gewählte Durchwahl abzüglich
der ersten 4 Ziffern übergeben. Bei Auswahl einer nicht existenten Mailbox wird man
freundlich auf den Fehler hingewiesen. Ferner sollte man noch einen generischen Eintrag
für alle Mailboxen vorsehen:

20



3 ASTERISK 3.3 Komponenten und deren Konfiguration

exten => 3000,1,Answer()
exten => 3000,n,VoiceMailMain()
exten => 3000,n,Hangup()

Wählt man die Nummer 3000, so wird man vor der Passworteingabe aufgefordert, die
Nummer der gewünschten Mailbox einzugeben.

3.3.7. Queues

Queues stellen Anruferwarteschlangen dar, wie man sie z.B. von Callcentern kennt. Hier-
bei wählt ein Anrufer eine Gruppenrufnummer und wird dann je nach Queuealgorithmus
z.B. mit einem beliebigen Mitglied der Gruppe oder demjenigen, der zuerst abhebt, ver-
bunden. Analog zu anderen Diensten werden Queues in der Datei
/etc/asterisk/queues.conf eingerichtet:

[gruppe1]
member => SIP/teilnehmer1
member => SIP/teilnehmer2

Im Beispiel wird die Queue gruppe1 samt ihren beiden Mitgliedern SIP/teilnehmer1
und SIP/teilnehmer2 konfiguriert. Diese SIP-Kanäle müssen natürlich ebenfalls in
/etc/asterisk/sip.conf eingerichtet sein. Um einen Anruf auf eine Queue weiter-
leiten zu können, existiert im Dialplan die Funktion Queue(), die im folgenden Beispiel
verwendet wird, um die Durchwahl 4000 der gruppe1 zuzuweisen:

exten => 4000,1,Answer()
exten => 4000,n,Queue(gruppe1)
exten => 4000,n,Hangup()

Per default klingeln bei Anwahl einer Queue alle zugeordneten Endgeräte, hier also
SIP/teilnehmer1 und SIP/teilnehmer2. Neben diesem ringall genannten Algorithmus
werden von Asterisk noch die folgenden unterstützt:

roundrobin leitet jeden Anrufer reihum auf den nächsten Kanal in der Queueliste weiter

leastrecent leitet einen Anrufer auf das Endgerät weiter, welches seit der längsten Zeit-
spanne nicht mehr von dieser Queue angesprochen wurde

fewestcalls leitet einen Anrufer auf das Endgerät weiter, welches bisher die wenigsten
Anrufen angenommen hat

random leitet ein ankommendes Gespräch auf einen zufällig ausgewählten Kanal weiter

rrmemory ein verbesserter Roundrobin-Algorithmus

Einen alternativen Algorithmus weist man einer Queue mit dem Schlüsselwort strategy
zu:

[gruppe1]
strategy = fewestcalls
member => SIP/teilnehmer1
member => SIP/teilnehmer2

21



3 ASTERISK 3.3 Komponenten und deren Konfiguration

3.3.8. Asterisk Manager Interface

Das Asterisk Manager Interface (AMI) ist ein Serverdienst, mit dem Telefongespräche
zwischen Teilnehmern aufgebaut, beendet und beobachtet werden können. Es können
ferner Stati von Queues, Voicemailboxen, SIP- und IAX-Clients abgefragt werden. Die
gesamte Kommunikation zwischen einem AMI-Client und Asterisk verwendet ein trivia-
les Klartextprotokoll. Per default werden serverseitig Verbindungsanfragen auf TCP-
Port 5038 erwartet. Die Konfiguration samt Authentifizierungsdetails werden in der
Datei /etc/asterisk/manager.conf vorgenommen. Hier muss zunächst im Abschnitt
[general] der AMI-Server eingeschaltet werden:

[general]
enabled=yes

Andere Abschnittsbezeichner als general werden als Benutzernamen aufgefasst:

[amiuser]
secret=sehr_geheim

Hier wurde der User amiuser mit dem Passwort sehr geheim angelegt. Wie in der
iax.conf kann über die Parameter deny bzw. permit festgelegt werden, aus welchen
IP-Netzen sich dieser Benutzer verbinden darf:

deny=0.0.0.0/0.0.0.0
permit=127.0.0.1/32

Im Beispiel wird zunächst der komplette IP-Adressraum gesperrt, um dann lediglich Ver-
bindungen über das Loopbackinterface zuzulassen. Abschliessend werden dem Benutzer
noch sämtliche Rechte zugesprochen:

read = system,call,log,verbose,command,agent,user
write = system,call,log,verbose,command,agent,user

Das Asterisk Manager Interface wird in der Webanwendung AD2Ast verwendet, welche
im Rahmen dieser Studienarbeit erstellt wurde (s. Kapitel 6). Zudem greifen die in
Kapitel 4 vorgestellten Managementtools auch auf diese Schnittstelle zurück.

3.3.9. Sprachpakete

Asterisk wird mit einem englischen Sprachset geliefert, welches u.a. die gesprochenen
Menüs für Voicemailboxen oder Anruferwarteschlangen beinhaltet. Obwohl diese in sehr
deutlichem und leicht zu verstehendem Englisch aufgenommen wurden, bietet sich der
Einsatz lokalisierter Samples an. So hat die Stadt Pforzheim ein deutsches Sprachpaket
unter der GPL veröffentlich. Das Archiv wird mit folgendem Befehlszweizeiler entpackt
und installiert:

tar -xzf ast_prompts_de_v2_0.tar.gz
cp -av ast_prompts_de_v2_0/var/lib/asterisk/sounds/* \
/var/lib/asterisk/sounds/

Ferner muss in den globalen Sektionen der Konfigurationsdateien (wie z.B. sip.conf
oder iax.conf) der Parameter language=de hinzugefügt werden.

22



3 ASTERISK 3.3 Komponenten und deren Konfiguration

3.3.10. Festival

Das Programmpaket Festival stellt eine sogenannte text to speech-Anwendung dar, die
Texte in Sprache umwandelt. Auf die vielfältigen Einstellungen und Optimierungsmög-
lichkeiten wird hier nicht näher eingegangen, so dass man mit den Standardeinstellun-
gen ausreichende Ergebnisse erzielt, wenn kurze, englischsprachige Sätze synthetisiert
werden. Festival kann entweder über das Kommandozeilenprogramm text2wave oder
per Netzwerkverbindung angesprochen werden, sofern es als Serverdienst eingerichtet
ist. Asterisk kann mittels der Dialplanfunktion Festival() einen solchen Server an-
sprechen. Hierfür muss jedoch die Konfigurationsdatei /etc/festival.scm um folgende
Zeilen ergänzt werden (s.a. contrib/README.festival im Sourcecodeverzeichnis von
Asterisk):

(define (tts_textasterisk string mode)
"(tts_textasterisk STRING MODE)
Apply tts to STRING. This function is specifically designed for
use in server mode so a single function call may synthesize the string.
This function name may be added to the server safe functions."
(let ((wholeutt (utt.synth (eval (list ’Utterance ’Text string)))))
(utt.wave.resample wholeutt 8000)
(utt.wave.rescale wholeutt 5)
(utt.send.wave.client wholeutt)))

Nun kann man z.B. alle ungültigen Durchwahlnummern mit einen entsprechenden Hin-
weis versehen, indem man am Ende des Dialplans folgendes anfügt:

exten => _X.,1,Answer()
exten => _X.,n,Festival(This is an invalid number.)
exten => _X.,n,Hangup()

Mit diesem catch all -Eintrag bekäme ein Anrufer den Satz ”This is an invalid number.“
zu hören, wenn er eine Telefonnummer anwählt, die nicht zuvor explizit verarbeitet wird.

3.3.11. Weitere Dienste

Die im folgenden dargestellten Dienste wurden im Zuge dieser Studienarbeit nicht tiefer
behandelt. Sie werden hier dennoch knapp erläutert, da sie zum Standardumfang von
Asterisk gehören und spannende Themengebiete für zukünftige Arbeiten darstellen.

ENUM Mit dem tElephone NUmber Mapping wird im globalen Domain Name System
(DNS) hinterlegt, wie eine Telefonnummer zu erreichen ist. Im Dialplan steht zur
Abfrage die Funktion ENUMLookup() zur Verfügung, die bei einer erfolgreichen
Suche im DNS die Variable $ENUM mit einer entsprechenden Kanaldefinition belegt.
Diese wiederum kann dann per Aufruf von Dial() angewählt werden.

DUNDi Das Distributed Universal Number Directory ist funktional mit ENUM ver-
wandt. Es handelt sich hierbei jedoch um ein Netzwerkprotokoll, welches von Mark
Spencer zum Auffinden von Telefonteilnehmern über das IAX-Protokoll entwickelt
wurde.

AGI Das Asterisk Gateway Interface ermöglicht es, eigene Skripte in Perl, PHP oder
einer nahezu beliebigen Programmiersprache in den Dialplan einzubinden. Die-
se kommunizieren über Standardeingabe und -ausgabe sowie per Standardfehler-
stream mit Asterisk. Somit ist es möglich, im Dialplan dynamische Funktionen
oder gar Anbindungen an Datenbanken zu realisieren.

23



3 ASTERISK 3.3 Komponenten und deren Konfiguration

MoH Per Music on Hold können Anrufer (z.B. in einer Queue) über die Wartezeit
hinweggetröstet werden. Asterisk bietet die Möglichkeit, eigene Musikstücke zu
verwenden.

24



4 MANAGEMENTTOOLS

4. Managementtools

4.1. gastman

Der GTK Asterisk Manager (gastman) ist ein von Mark Spencer geschriebenes Pro-
gramm, mit dem sich Zustände und Ereignisse von Kanälen beobachten und Telefonate
steuern lassen. Als Grafikbibliothek wird das GIMP Toolkit (GTK) verwendet, so dass
primär Linux und Unix-Derivate als Plattform in Frage kommen. Gastman greift auf
das Asterisk Management Interface zurück, über das zwar Stati und Events, aber keine
Auflistung der Endgeräte abgefragt werden können. Daher müssen alle Telefone, Queu-
es, Voicemailboxen usw. zunächst manuell eingerichtet werden. In Abbildung 6 sind dies
die Symbole in der mittleren Spalte. Über die den jeweiligen Symbolen zugeordneten
Kontextmenüs können Gespräche zwischen zwei Teilnehmern initiert oder Telefonate
beendet werden. Zusätzlich verfügt gastman über einen integrierten Asteriskclient.

Abbildung 6: Gastman

4.2. Flash Operator Panel

Das Flash Operator Panel ist funktional ähnlich zu gastman. Es erlaubt ebenfalls, End-
geräte und Gespräche zu überwachen und zu steuern. Jedoch handelt es sich um ei-
ne webbasierte Client-/Serveranwendung. Im Webbrowser wird zu diesem Zweck eine
Flash-Datei geladen, die sich mit einem in Perl geschriebenen Server auf dem Aste-
riskrechner verbindet. Dieser Server wiederum kontaktiert das Asterisk Manager In-
terface. Das Flash Operator Panel erlaubt eine flexible Konfiguration: Buttons können
einzelnen Endgeräten zugeordnet und mit einem Link zu einer weiterführenden Webseite
versehen werden. Dank der Flashoberfläche ist prinzipiell möglich, zwei Endgeräte per
Drag & Drop miteinander zu verbinden. Allerdings stürzte der auf dem Asteriskrechner
laufende Server des Flash Operator Panels reproduzierbar beim Versuch ab, ein Gespräch
zwischen einem Hard- und einem Softphone zu initiieren. Ebenso war es nicht möglich,
ein Telefonat zu einem MeetMe-Raum herzustellen. Daher wurden weitere Tests mit dem

25



4 MANAGEMENTTOOLS 4.2 Flash Operator Panel

Flash Operator Panel nicht unternommen und statt dessen empfiehlt der Autor dieser
Studienarbeit, spätere Versionen der Software zu evaluieren.

Abbildung 7: Flash Operator Panel

26



5 ENDGERÄTE

5. Endgeräte

5.1. Softphones

Abbildung 8: X-Lite unter Microsoft Windows

Softphones sind clientseitige Programme, die unter Verwendung einer im PC instal-
lierten Soundkarte samt Headsets ein Telefon nachbilden. Die meisten Softphones ver-
wenden SIP/RTP, um sich mit einem Asteriskserver zu verbinden. Nur wenige Clients
unterstützen IAX. Einen Zwitter, der beide Welten kombiniert, sucht man vergeblich.
Ebenso fehlen zumindest bei kostenlos erhältlichen Programmen wünschenswerte Funk-
tionen wie die Anbindung an LDAP- oder andere Verzeichnisdienste, die als Telefonbuch
fungieren können. Generell hinterließen die getesteten Softphones beim Autor den Ein-
druck, es handle sich um Chat- oder Instant-Messaging-Clients mit Telefonfunktion.
Ein sehr schlechtes Bild lieferten die als Opensource veröffentlichten SIP-Phones kpho-
ne und linphone. Ersteres reagierte nicht mehr, sobald ein Gespräch aufgebaut war,
während letzteres nicht einmal fehlerfrei zu compilieren war. Ferner preisen einige An-
bieter ihre Software als frei nutzbaren, standardkonformen SIP-Client an, setzen jedoch
ein wenn auch kostenloses Kundenkonto voraus und sind nur per Tricks wie lokale DNS-
Änderungen oder Eingriff in die Windows-Registry zur Zusammenarbeit mit einem ei-
genen Asteriskserver zu überreden. Daher blieben Programme wie WengoPhone oder
Nero Sipps ebenfalls aussen vor. Sehr erfreulich verliefen Tests mit IAX-Clients. Hier
ermöglichten Opensource- und Free-/Sharewareprogramme unter Linux, Windows und
selbst unter Apples Mac OS X (auf dem Notebook des Autors) problemlos Telefonge-
spräche unter Einsatz des Asteriskservers.

5.1.1. X-Lite

Der SIP-Client X-Lite wird von der Firma CounterPath für die Betriebssysteme Win-
dows (Abbildung 8), Linux und Mac OS X (Abbildung 9) kostenlos angeboten. Es
handelt sich dabei um die Freewareversion von eyeBeam, einem integrierten SIP- &
Video-over-IP-Client des gleichen Herstellers. Als Besonderheit ermöglicht X-Lite das
clientseitige Aufzeichnen von Telefonaten sowie die Konfiguration mehrerer Asterisk-
bzw. SIP-Accounts, um so schneller zwischen einzelnen Anbietern wechseln zu können.

27



5 ENDGERÄTE 5.1 Softphones

Abbildung 9: X-Lite unter Mac OS X

5.1.2. Snom

Abbildung 10: Snom Softphone

Der Firma Snom ist es gelungen, ihr durchdachtes Hardphone snom 360 als reine
Softwarevariante für Windows (Abbildung 10) zu veröffentlichen, die für private Zwecke
frei nutzbar ist. Zwar wurde die Bedienung des Hardphones 1:1 auf die des Softphones
übertragen, dennoch gelingt die Konfiguration problemlos dank des eingebauten Webser-
vers (s. Abbildung 11). Die Software bietet vielfältige Möglichkeiten:

• Unterstützung von bis 12 einzelnen SIP-Accounts

• 12 frei belegbare Sondertasten

• 32 frei programmierbare Kurzwahlnummern

• Aufrufen einer URL bei Ereignissen wie Hörer abnehmen oder Anruf beendet, so
dass z.B. auf einer firmeninternen Webseite angezeigt werden kann, ob ein Benutzer
gerade telefoniert oder nicht gestört werden will

• Remotelogging auf einen Syslogserver

• Management per SNMP

28



5 ENDGERÄTE 5.1 Softphones

Abbildung 11: Snom Softphone – Weboberfläche

• Import des Adressbuches aus einer CSV-Datei

5.1.3. 3CX Phone

Abbildung 12: 3CX Phone

Das Kernprodukt der Firma 3CX ist ein Telefonieserver für Windows. Das sparta-
nische, aber voll funktionale SIP-Phone 3CX Phone (Abbildung 12) ist separat und
frei erhältlich. Es unterstützt ebenfalls mehrere SIP-Accounts und pflegt ein lokales
Adressbuch. Als Besonderheit kann es per SIP Textnachrichten an andere Endgeräte
versenden, gleichwohl kaum eine andere Software dies verarbeiten kann.

5.1.4. JackenIAX

Der IAX-Client JackenIAX (s. Abbildung 13) ist (leider) ein reinrassiges Mac OS X-
Programm. Es ist ähnlich einfach wie der SIP-Client 3CX Phone, ermöglicht aber die

29



5 ENDGERÄTE 5.1 Softphones

Abbildung 13: JackenIAX

Einbindung des herkömmlichen Adressbuches, wie es auf jedem System von Apple in-
stalliert ist. Statt eine eigene Adressliste für JackenIAX zu pflegen, können hier einfach
per Doppelklick aus dem schon bestehenden Adressbuch Kontakte angerufen werden.

5.1.5. Idefisk

Abbildung 14: Idefisk unter Mac OS X

Idefisk ist ein frei für Windows, Linux und Mac OS X (Abbildung 14) erhältlicher
IAX-Client. Als Besonderheit unterstützt er lediglich mehrere IAX-Accounts.

30



5 ENDGERÄTE 5.2 Hardphones

Abbildung 15: Kiax unter Linux

5.1.6. Kiax

Das funktionale Opensource-Pendant zu Idefisk findet sich in Kiax (s. Abbildung 15),
welches ebenfalls mehrere IAX-Accounts unterstützt und lediglich ein separat gepflegtes
Adressbuch führt.

5.2. Hardphones

5.2.1. Grandstream

Abbildung 16: Grandstream GXP-2000

Die IP-Telefone der Firma Grandstream Networks sind preislich attraktive Hardpho-
nes. Aktuell gibt es drei Produktlinien: die einfachen Modelle der BudgeTone-Serie (50 -

31



5 ENDGERÄTE 5.2 Hardphones

Abbildung 17: Grandstream BudgeTone 200

70 ¤), die Enterprise-Telefone der Reihe GXP (ca. 100 ¤) sowie die videofähigen Geräte
der GXV -Reihe (ca. 250 ¤, Stand jeweils Januar 2007). Für den weiteren Einsatz im
Labor wurden zwei Telefone des Typs GXP 2000 (Abbildung 16) angeschafft. Ferner
standen aus dem privaten Fundus des Autors zwei BudgeTone 101 für Testzwecke zur
Verfügung. All diese Geräte sprechen ausschliesslich SIP und unterstützen die gängigen
Audiocodecs µ-Law, A-Law sowie die der GSM-Familie. Die Erstkonfiguration erfolgt
über menügeführte Dialoge an den Telefonen. Das BudgeTone verfügt hierzu über ein
LC-Display, das GXP 2000 über eine besser lesbare Dot-Matrix-Anzeige. Neben Zuwei-
sung einer festen IP-Adresse samt Netzmaske und Defaultgateway können auch Adressen
per DHCP geholt werden. Die weitere Konfiguration kann bequem über den eingebau-
ten Webserver erfolgen (Abbildung 18). Zunächst sollten natürlich die obligatorischen

Abbildung 18: Weboberfläche zur Konfiguration eines Grandstream BudgeTone 100

SIP-Einstellungen vorgenommen werden und die Adresse des Asteriskservers samt User-
name und Passwort konfiguriert werden. Das GXP 2000 unterstützt hierbei bis zu 4 un-
abhängige SIP-Accounts. Zudem können sich die Grandstreamgeräte als PPPoE-Client
selbstständig bei einem (DSL-)Provider einwählen. Die Geräte aus der GXP-Serie können
sogar als NAT-Router fungieren. Datum und Uhrzeit können per Network Time Protocol

32



5 ENDGERÄTE 5.2 Hardphones

(NTP) von entsprechenden Server synchronisiert werden. Ebenso ist ein automatisches
Firmwareupdate per HTTP oder TFTP möglich. Ferner können Gespräche weitergeleitet
bzw. übergeben und Telefonkonferenzen (ohne Einsatz eines MeetMe-Raumes) eingelei-
tet werden. Dank des eingebauten Lautsprechers samt Mikrofon kann der Anwender frei
und ohne den Hörer in die Hand zu nehmen telefonieren. Das BudgeTone verfügt über
keine Möglichkeit, ein Telefonbuch zu pflegen. Beim GXP 2000 kann eine solche Liste
nicht nur lokal angelegt, sondern auch als XML-Datei von einem Webserver importiert
werden.

5.2.2. Snom

Abbildung 19: snom 360

Die deutsche Firma snom bietet neben ihrem für private Verwendung frei zu nutzen-
dem Softphone (s. Kapitel 5.1.2) die drei Hardphones snom 300, snom 320 und das
snom 360 an. Wie auch beim Softphone werden bis zu 12 SIP-Accounts unterstützt. Zu-
dem können Telefonbücher per LDAP importiert und die Geräte per SNMP abgefragt
werden.

33



6 AD2AST

6. AD2Ast

Um die Fähigkeiten des Asterisk Manager Interfaces zu demonstrieren, wurde die We-
banwendung AD2Ast entwickelt. Sie synchronisiert Name, Emailadresse und Telefon-
nummer von Benutzerdaten aus einem Active Directory in eine MySQL-Datenbank.
Eine Weboberfläche, sprich ein CGI-Skript greift auf diese Datenbank zu und ermöglicht
dem Anwender, komfortabel über einen Browser ein Gespräch zwischen seinem Telefon
und dem ausgewählten Kontakt herzustellen. Zuvor muss sich der Anwender jedoch an
der Weboberfläche mit Username und Passwort anmelden. Der Username ist identisch
mit der Nummer der Voicemailbox des jeweiligen Anwenders. Als Passwort wird da-
her auch nur dasjenige der entsprechenden Mailbox akzeptiert. Weitere Voraussetzung
ist, dass die Nummer der Mailbox gleich der Durchwahl des Telefons ist, welches dem
Anwender zugeordnet ist, da das CGI-Skript den Dialplan parsen muss, um den Kanal
jenes Telefons zu ermitteln. Dieses Vorgehen ist durch das Asterisk Manager Interface
bedingt. Es kann zwar das Zieltelefon bzw. die Zielnummer als Durchwahl verarbeiten,
das Quelltelefon muss jedoch in der üblichen Schreibweise wie z.B. SIP/teilnehmer1
angegeben werden. Über die Weboberfläche kann jeder Benutzer zusätzliche, nicht im
Active Directory hinterlegte Telefonnummern angeben, unter denen er zu erreichen ist.
Diese werden in einer separaten Tabelle in der MySQL-Datenbank gespeichert. Ferner
werden über ein weiteres CGI-Skript alle Daten per XML ausgegeben. Dieses dient zum
Import in das Telefonbuch der Grandstream Hardphones. Es ergibt sich der in Abbil-
dung 20 gezeigte Aufbau. Als Programmier- bzw. Skriptsprache wurde Perl verwendet,
da hierfür entsprechende DNS- und LDAP-Module zur Abfrage eines Active Directorys
verfügbar sind. Zudem ist das Verarbeiten von Zeichenketten in Perl relativ einfach. Der
Verlust in der Ausführungsgeschwindigkeit gegenüber nativ compilierenden Sprachen wie
C wurde in Kauf genommen. Andere Skriptsprachen wie z.B. PHP verfügen nicht über
die geforderten DNS- bzw. LDAP-Funktionen. Der Einsatz von in Java geschriebenen
Servlets hätte an dieser Stelle einen zu hohen Aufwand bedeutet, da neben dem Webser-
ver noch ein spezieller Servletcontainer wie Tomcat erforderlich gewesen wäre. Folgende
Perl-Module werden von AD2Ast verwendet und müssen ggf. nachträglich installiert
werden:

DBI bietet abstrakten Datenbankzugriff

DBD-mysql Datenbanktreiber für MySQL

Digest::MD5 stellt Routinen zur Berechnung von MD5-Hashes bereit

IO::Socket ermöglicht den Zugriff auf das Socketinterface zur Netzwerkprogrammierung
unter Unix

MIME::Base64 stellt Funktionen zur Stringkonvertierung ins Base64-Format bereit

Net::DNS ermöglicht spezielle Anfragen an Nameserver

Net::LDAP stellt Funktionen zum Zugriff auf LDAP-Server bereit

Die auf dem Webserver laufenden Skripte ad2ast dial.pl, ad2ast sync.pl und
ad2ast xml.pl binden jeweils die Datei ad2ast subs.pl ein. Diese enthält die Para-
meter zur Datenbankverbindung, Informationen über das Active Directory, Daten zur
Konnektierung des Asterisk Manager Interfaces sowie Routinen zum Anbinden und Ab-
fragen der Datenbank.

34



6 AD2AST 6.1 ad2ast sync.pl

Abbildung 20: Zusammenspiel der Komponenten in der AD2Ast-Umgebung

6.1. ad2ast sync.pl

Das Skript ad2ast sync.pl synchronisiert Telefonnumer, Emailadresse und Name von
Benutzern in einem Active Directory in eine MySQL-Datenbank. Die dafür vorgesehe-
nen Benutzerkonten müssen sich in einer zusätzlichen Gruppe befinden, die durch die
Variable $search dn angegeben wird. Da ein Active Directory unter anderem aus min-
destens einer DNS-Zone besteht, können die zuständigen LDAP-Server entweder direkt
angegeben werden (Variable @ldap servers) oder aber über sogenannte SRV-Records
aus dem DNS bestimmt werden. Hierzu werden die in der Variablen @nameservers vor-
gegebenen Nameserver nach DNS-Einträgen der Form ldap. tcp.Domäne gefragt. Die
Domäne wird hierbei über die Variable $domain bestimmt. Die LDAP-Server werden mit
Hilfe den in $bind dn und $bind pw angegebenen Usernamen und Passwort konnektiert.
Anschliessend wird nach Objekten gesucht, die über das Attribut ipPhone verfügen und
sich zudem in der o.g. Gruppe befinden. Als Rückgabe dieser LDAP-Suche werden die
Attribute displayName, mail und ipPhone ausgewählt. Die so gelieferten Daten wer-
den mit denen in derjenigen SQL-Tabelle verglichen, die durch die Variable $ad table
definiert ist. Hier werden in einer Transaktion zunächst alle Bestandsdaten gelöscht, die
nicht mehr im Active Directoy vorhanden sind. Im letzten Arbeitsschritt werden noch

35



6 AD2AST 6.2 ad2ast dial.pl

nicht vorhandene Benutzerinformationen in der Datenbank gespeichert.
Das Skript ad2ast sync.pl ist als Cronjob gedacht und sollte einmal täglich ausgeführt
werden, z.B. um 1 Uhr nachts per folgendem Eintrag in der Crontab:

0 1 * * * cd /srv/www/ad2ast/cgi-bin && ./ad2ast_sync.pl

6.2. ad2ast dial.pl

Das CGI-Skript ad2ast dial.pl ist die Schnittstelle zum Benutzer und somit die Kern-
komponente. Die Authentifizierung der Benutzer erfolgt über eine eigens erstellte Cli-
ent-/Serverschnittstelle, welche die in der voicemail.conf hinterlegten Mailboxnum-
mern als Usernamen und das jeweilige Mailboxkennwort als Passwort verwendet. Nach
dem erfolgreichen Login wird dem Anwender zunächst eine Willkommensseite präsentiert.
Von hier hat er die folgenden Möglichkeiten:

• einen in der Datenbank hinterlegten Kontakt anzurufen

• eine weitere Telefonnummer, die nicht im Active Directory gepflegt wird, unter der
er aber zu erreichen ist, hinzuzufügen oder zu löschen

• Teilnehmer anhand von Telefonnummer, Emailadresse oder Name zu suchen

• sich abzumelden.

Als CGI-Skript bekommt ad2ast dial.pl den Namen der Methode, mit der es aufgeru-
fen wurde, in der Umgebungsvariablen REQUEST METHOD übergeben. Unterstützt werden
die Methoden POST, bei der alle dem Skript übergebenen Daten von der Standardeinga-
be gelesen werden müssen, und GET, bei dem diese Daten als Teil der aufgerufenen URL
in der Umgebungsvariablen QUERY STRING gespeichert sind. Die per POST oder GET
gelieferten Werte liegen in der Form key1=value1&key2=value2&...&keyN=valueN vor.
Sonder- und Metazeichen wie z.B. das Gleichheitszeichen oder Umlaute werden als he-
xadezimale Zahl ihres ASCII-Wertes mit vorangestelltem Prozentzeichen dargestellt.
So würde der Name Bärbel als name=B%C3%A4rbel übergeben werden. Die Aufteilung
der Schlüssel-/Wertepaare übernimmt die Funktion http vars(). Sie teilt zunächst die
übergebene Zeichenkette bei jedem Vorkommen eines kaufmännischen Und-Zeichens
auf. Die so gewonnenen Teilstrings stellen in Perl ein Array dar, dessen Elemente mit
dem Operator foreach durchwandert werden können. Jedes dieser Elemente wird nun
an Gleichheitszeichen geteilt, so dass jeder n-te Schlüssel und jeder n-te Wert in den
Variablen $key und $value vorliegen. Nach dem Ersetzen von Meta- und Sonderzei-
chen mittels regulärer Ausdrücke wird der Schlüssel als Index und der Wert als Da-
tenfeld in einem Hash, einem assoziierten Array, verwendet. Somit liegen die dem CGI-
Skript übergebenen Werte nun in der Perl-Variablen %http post vor. Die vom Anwender
gewünschte Aktion wird generell im Datenfeld $http post{action} übergeben. Folgen-
de Aktionen werden verarbeitet:

login Der Anwender hat Username und Passwort in die entsprechenden Formularfel-
der eingetragen und möchte sich einloggen. Diese Authentifizierungswerte erhält
das Skript in den Variablen $http post{username} bzw. $http post{password}.
Sie werden anschliessend verwendet, um sich gegen die in der voicemail.conf
hinterlegten Daten zu authentifizieren. Stimmen Username und Passwort überein,
wird dem Webbrowser ein sogenanntes Cookie geliefert, welches bei jedem weiteren
Seitenaufruf sicherstellt, dass der Anwender sich zuvor korrekt angemeldet hat

36



6 AD2AST 6.2 ad2ast dial.pl

Abbildung 21: Die Teilnehmerliste in der Weboberfläche von AD2Ast

Abbildung 22: Maske zur Benutzersuche

diallist Dem Benutzer werden alle in der MySQL-Datenbank hinterlegten Teilnehmer
samt Telefonnummern und Emailadresse dargestellt (s. Abbildung 21). Er hat hier
die Möglichkeiten, die Liste nach Name, Telefon oder Email zu sortieren, oder per
Klick auf den mit Anrufen bezeichneten Link die entsprechende Person anzurufen.
Die eigentliche Darstellung in HTML-Code übernimmt die Funktion diallist(),
welche auch bei der Ergebnispräsentation einer Suche (s.u.) zum Einsatz kommt

search Dem Anwender wird die Eingabemaske für die Suche im Datenbestand angezeigt
(Abbildung 22). Er hat die Möglichkeit, nach Name, Email und Telefonnummer zu
suchen, wobei diese 3 Suchparameter logisch UND-verknüpft sind. Als Wildcard
steht das allgemein verwendete Sternchen (*) zur Verfügung

dosearch Mit dieser Aktion wird die eigentliche Suche im Datenbestand durchgeführt.
Da kein normalisiertes Datenbankmodell realisiert wurde (dies ist beim Datenim-
port aus einem LDAP-Verzeichnis wie einem AD auch nur mit grossem Aufwand
möglich), wird die Suche in Perl mittels regulärer Ausdrücke durchgeführt. Zu-
vor müssen jedoch die 3 Suchparameter in gültige reguläre Ausdrücke überführt
werden. So muss z.B. der vom Anwender eingegebene Suchstring *an*üller* in
den äquivalenten regulären Ausdruck .̂*an.*üller.*$ überführt werden. Dieser
würde dann auf Namen wie Hans Müller, Johann Schnüller, Janine Füller usw.
zutreffen. Treffen alle drei Suchparameter (Name, Telefon, Email) zu, und sei es

37



6 AD2AST 6.2 ad2ast dial.pl

nur, weil der Anwender überall das Sternchen verwendet hat, so werden die Ergeb-
nisse wiederum der Funktion diallist() übergeben, welche die Darstellung per
HTML vornimmt

dial Diese Aktion wird aufgerufen, wenn der Anwender aus der Kontaktliste oder aus
einem Suchergebnis heraus auf Anrufen geklickt hat. Hier wird jedoch nur ein Hin-
weistext (”Ihr Telefon klingelt nun.“) präsentiert und der Webbrowser automatisch
per Redirect dazu aufgefordert, die gleiche Seite, aber mit dem Aktionsparamter
dodial aufzurufen

dodial Dies ist das Kernstück der gesamten Weboberfläche, da diese Aktion den An-
wender mit dem von ihm gewünschten Teilnehmer verbindet. Nach einigen Plau-
sibilitätstests, mit denen unterbunden wird, dass ein nicht in der Datenbank hin-
terlegter Kontakt angerufen wird und dass sich der Anwender nicht selbst anrufen
will (obgleich dies nur duch Manipulation in der URL möglich ist), wird zunächst
der Dialplan über das Asterisk Manager Interface befragt, wie das Telefon des ak-
tuell angemeldeten Anwenders zu erreichen ist. Hierzu wird der AMI-Befehl show
dialplan mit der entsprechenden Nummer abgesetzt. Geliefert werden all diejeni-
gen Einträge der extensions.conf, die als Durchwahl eben die gefragte Nummer
aufweisen. Diese Einträge werden nun per regulärem Ausdruck nach einem Aufruf
der Dialplanfunktion Dial() durchsucht, die ja in diesem Falle den der gesuchten
Durchwahl zugeordneten Kanal als Parameter aufweisen muss. Ist dieser gefun-
den, kann über das Asterisk Manager Interface das Kommando Originate mit
Quellkanal und Zielnummer abgesetzt werden. Jedoch blockiert dieses Kommando
solange, bis der Anwender den Hörer seines Telefons (welches über den Quellka-
nal angesprochen wird) abgenommen hat. Erst danach wird der Programmfluss
fortgesetzt und per HTML der Hinweistext ausgegeben, dass nun das Telefon des
gewünschten Gegenübers klingelt

extra Hier wird dem Anwender eine Übersicht seiner zusätzlich eingetragenen Telefon-
nummern dargestellt. Er hat wie in Abbildung 23 dargestellt die Möglichkeit, ent-
weder eine davon zu löschen oder eine neue einzutragen

extra-add Diese Aktion wird aufgerufen, wenn der Anwender eine neue Telefonnummer
hinzufügen möchte. Er erhält lediglich die Information, dass die Nummer in die
Datenbank eingetragen wurde und einen Link, der ihn zur Übersicht über seine
Telefonnummern zurückleitet

extra-delete Analog zu extra-add löscht diese Aktion eine Telefonnummer aus der Da-
tenbank

logout Der Anwender möchte sich abmelden. Hierzu wird das Cookie mit leerem Inhalt
überschrieben.

Enthält die Variable $http post{action} keine der aufgeführten Werte oder wurde sie
gar nicht übergeben, so wird dem Anwender die Loginmaske präsentiert, die zur Eingabe
von Benutzernamen und Kennwort auffordert.
Da der Asteriskserver und der Web-/Datenbankserver nicht auf der selben Maschine lau-
fen, musste sichergestellt werden, dass sich die Anwender gegen die in der voicemail.conf
hinterlegten Anmeldedaten authentifizieren können. Hierzu läuft auf dem Asteriskrech-
ner der Dienst ad2ast auth.pl (s. Kapitel 6.3). Er akzeptiert Verbindungen per TCP auf
Port 6666. Der Authentifizierungsvorgang basiert auf einem Challenge-/Responsever-
fahren, bei dem das Passwort niemals im Klartext über das Netzwerk verschickt wird.

38



6 AD2AST 6.2 ad2ast dial.pl

Abbildung 23: Maske zum Bearbeiten eigener Rufnummern

Die Funktion check credentials() kapselt alle notwendigen Schritte. Nach Aufbau der
Verbindung liefert der auf dem Asteriskserver laufende Dienst ad2ast auth.pl zunächst
einen zufälligen Einmalwert, eine sogenannte Nonce. Diese wird als Zeichenkette zusam-
men mit dem Usernamen und dem Passwort der Einweghashfunktion md5() übergeben.
Dieser Hashwert sowie der Username werden dem Dienst übermittelt, der seinerseits die
Hashfunktion in gleicher Art und Weise aufruft. Stimmen der von ihm ermittelte und der
vom CGI-Skript gelieferte Hash überein, wird dem Login des Anwenders zugestimmt.
Die Kommunikation mit dem Asterisk Manager Interface erfolgt ebenfalls über eine
TCP-Verbindung auf Port 5038. Es handelt sich dabei um eine einfache Klartextkom-
munikation. Jede Anweisung beginnt mit dem Schlüsselwort Action, gefolgt von einem
Doppelpunkt samt Leerzeichen und dem eigentlichen Befehl. In den folgenden Anwei-
sungszeilen können weitere Parameter folgen, ebenfalls in der Syntax Key: Value. Das
Ende einer Anweisung wird durch eine Leerzeile markiert. Antworten vom AMI-Server
erfolgen in der gleichen Syntax, sprich ebenfalls durch derartige Schlüssel-/Wertepaare.
Lediglich bei mehrzeiligen Rückgabewerten wie z.B. einem Auszug aus dem Dialplan
stellt die erste Leerzeile nicht das Ende der Antwort dar, sondern trennt den Statusteil
von den eigentlichen Daten. Erst der String --END COMMAND-- weist auf das Ende aller
gelieferten Daten hin. Um sich am Asterisk Manager Interface anzumelden, setzt der
Client folgende Answeisungen ab:

Action: Login
Username: amiuser
Secret: geheim
Events: off

Die Option Events: off weist den AMI-Server an, keine Ereignisse wie z.B. das Zu-
standekommen einer Verbidnung zwischen zwei Telefonen an den Client zu senden. Der
Dialplan oder der für eine gewünschte Durchwahl zuständige Teil des Dialplans wird
mittels der nachfolgenden Befehle abgefragt:

Action: Command
Command: show dialplan <Durchwahl>@default

Möchte man den gesamten Dialplan erhalten, so ist die Durchwahl samt Kontext weg-
zulassen. Der zentrale Befehl, um den sich diese Anwendung dreht, lautet Originate.
Er verbindet einen Kanal, sprich das Telefon, welches über ihn erreicht wird, mit einer
Durchwahl:

Action: Originate

39



6 AD2AST 6.3 ad2ast auth.pl

Channel: SIP/teilnehmer1
Exten: 4711
CallerID: 2001 <teilnehmer1>
Context: default
Priority: 1

Somit würde das SIP-Gerät teilnehmer1 mit der Durchwahl 4711 verbunden werden.
Der angerufene Teilnehmer sähe dann als CLIP-Information auf seinem Telefon, dass
eben teilnehmer1 mit der Rufnummer 2001 anruft.

6.3. ad2ast auth.pl

Das Skript ad2ast auth.pl stellt die Authentifizierung der Benutzer im Webfrontend
sicher. Es läuft unter der Obhut eines Servicedämons wie inetd, xinetd oder tcpser-
ver. Diese müssen so konfiguriert sein, dass bei einer Verbindungsanfrage auf Port
6666/TCP das Skript gestartet wird. Dieses kann dann mit einem Client kommuni-
zieren, indem es auf die Standardausgabe schreibt bzw. von der Standardeingabe liest.
Somit konnte die Programmierung einer eigenen Serverkomponente in ad2ast auth.pl
vermieden werden. Um der geforderten, als hinreichend sicher bewerteten Authentifizie-
rung per Challenge-/Responseverfahren mittels MD5-Verschlüsselung nachzukommen,
liest das Skript zunächst aus der Devicedatei des Systemzufallgenerators /dev/urandom
60 Bytes ein. Da es sich dabei um binärte Werte handelt, werden sie in eine Base64-
encodierte Nonce umgewandelt, die nur noch Buchstaben, Ziffern, das Pluszeichen oder
den Schrägstrich enthält. Diese Zeichenkette wird an den Client geschickt, welcher dar-
aufhin mit dem Benutzernamen und der per md5() verschlüsselten Zeichenkette aus
Benutzernamen, Passwort und Nonce antwortet. In der Datei
/etc/asterisk/voicemail.conf wird nun nach diesem Benutzer, sprich dieser Durch-
wahl bzw. Voicemailboxnummer geparst. Mit dem dort hinterlegten Passwort wird eben-
falls die gleiche MD5-Verschlüssung unter Verwendung der Nonce durchgeführt. Stimmt
das Ergebnis mit dem vom Client gelieferten Wert überein, wird diesem per Ausga-
be von ok signalisiert, dass sich der Anwender korrekt authentifiziert hat. Andernfalls
und generell bei Fehlern antwortet ad2ast auth.pl mit einem knappen no, was dem
Webfrontend anzeigt, den Anwender nicht hereinzulassen.

6.4. ad2ast xml.pl

Die IP-Telefone GXP 2000 von Grandstream können ihr Adressbuch als XML-Datei von
einem Webserver laden. Das erwartete Format ist relativ einfach:

<?xml version="1.0"?>
<AddressBook>
<Contact>
<LastName>...</LastName>
<FirstName>...</FirstName>
<Phone>
<phonenumber>...</phonenumber>
<accountindex>0</accountindex>

</Phone>
</Contact>
...

</AddressBook>

40



6 AD2AST 6.4 ad2ast xml.pl

Nach der obligatorischen XML-Deklarierung wird der Root-Container AddressBook er-
wartet. Dieser kann mehrere Elemente vom Typ Contact enthalten. Ein Kontakt besteht
schliesslich aus einem Vor- und einem Nachnamen sowie einem weiteren Container, der
die eigentliche Telefonnummer enthält. Das Skript ad2ast xml.pl erzeugt diese XML-
Datei auf Abruf und liefert sie direkt an den Client, sprich das Telefon aus. Dabei werden
alle Telefonnummern aus der MySQL-Datenbank exportiert.

41



7 INTEGRATION IN DAS LABORNETZ

7. Integration in das Labornetz

Der Asteriskserver soll zukünftig im Laboralltag im Rahmen von Praktika zu Vorlesun-
gen und im CCNA-Kurs eingesetzt werden. Hierzu wurde aus zwei älteren Computern
eine hinreichend leistungsfähige Maschine mit 512 MB Hauptspeicher, einer 15 GB gros-
sen Festplatte, einem DVD-ROM und einer Pentium 3 CPU mit 450 MHz geschaffen.
Zusätzlich erhielt dieser Rechner die ISDN-Karte. Als Betriebssystem wurde abweichend
zu den vorangegangenen Tests openSuSE Linux 10.2 installiert, wobei im Hinblick auf
den reinen Servereinsatz auf eine grafische Oberfläche wie KDE oder Gnome verzich-
tet wurde. Die Bedienung erfolgt daher ausschliesslich über die Textkonsole. In dieser
Konfiguration sollte der Rechner 5 gleichzeitige Telefonate ohne Verzögerungen oder Pa-
ketverlust verarbeiten können (vgl. Meggelen u. a. (2005)). Die Festplatte bekam eine
individuelle Partitionierung: 1024 MB zu Beginn der Festplatte als Swapspeicher, der
Rest von rund 14 GB als Root-Verzeichnis mit dem Dateisystem ext3 und der Option
data=journal. Folgende Pakete kamen zum Einsatz:

• openSuSE-Basissystem

• Konsolenwerkzeuge

• YaST-Systemverwaltung

• Grundlegende Entwicklung

• C/C++-Entwicklung

• Linux-Kernel-Entwicklung

• Voice over IP-Server (Asterisk)

• Asterisk-PgSQL

• PostgreSQL-Server

• Perl DBD MySQL

• Festival

Der Rechner erhielt den Hostnamen lnx-servp in der Domain infma-labor.local. Als
interne IP-Adresse wurde die 192.168.1.4 vergeben. Für eine Gruppe von Diplomanden
sollte der direkte Zugriff von aussen möglich sein. Die öffentliche Adresse für das zweite,
externe Interface wird zu einem späteren Zeitpunkt erfolgen. Da diese neuste Version von
SuSE Linux ein komplettes Asterisk-Paket samt Zaptel-Treiber und PostgreSQL-Modul
mitbringt, konnte darauf verzichtet werden, den Telefonieserver selbst zu übersetzen.
Ebenso wurde der PostgreSQL-Server als Binärpaket von der SuSE-DVD installiert.
Dennoch musste die Datei /var/lib/pgsql/data/pg hba.conf wie in Kapitel 3.2.2 be-
schrieben angepasst werden. Um die CDR-Tabelle anlegen zu können, wurde die Datei
postgres cdr.sql vom vormals genutzen Entwicklungssystem auf den neuen kopiert.
Als einziges Programm bedurfte lediglich mpg123 einer Installation aus dem Sourceco-
de. Ferner wurde das deutsche Sprachset für Asterisk manuell in das System kopiert.
Die Installation des Kernelmoduls für die ISDN-Karte war im Gegensatz zu SuSE Linux
10.0 nicht ohne weiteres möglich. openSuSE verzichtet konsequent auf die Auslieferung
von Programmen, die nicht komplett als Sourcecode unter einer zur GPL gleichwertigen
Lizenz vorliegen. Daher musste das Kernelmodul für die AVM-Karte von der Websei-
te http://opensuse.fltronic.de/SUSE10 2.htm heruntergeladen werden und manuell
per folgendem Befehl installiert werden:

42

http://opensuse.fltronic.de/SUSE10_2.htm


7 INTEGRATION IN DAS LABORNETZ

rpm -i fcpci-kmp-default-0.1_2.6.18.2_34-0.i586.rpm

Damit das Kernelmodul ztdummy aus dem Zaptel-Paket automatisch beim Systemstart
geladen wird, war die Datei /etc/sysconfig/zaptel mit folgender Zeile zu ergänzen:

ZAPTEL_MODULES="ztdummy"

Vorerst nicht benötigte Dienste innerhalb des Asteriskservers wurden aus Sicherheits-
gründen deaktiviert. Dies geschah mit besonderem Hinblick auf die direkte, d.h. nicht
durch eine Firewall geschützte Anbindung des Rechners an das Internet. Hierzu wurden
die Unterstützung für DUNDi sowie für das von der Firma Cisco entwickelte Protokoll
Skinny durch folgende Einträge in der /etc/asterisk/modules.conf unterbunden:

noload => chan_mgcp.so
noload => chan_skinny.so
noload => pbx_dundi.so

Da im Labornetz schon ein Webserver samt MySQL-Datenbank existiert, wurden dort
alle Skripte aus der Anwendung AD2Ast ausser ad2ast auth.pl installiert. Dieses Skript
musste auf dem Asteriskserver verbleiben, da es die lokale Datei
/etc/asterisk/voicemail.conf ausliest. Ferner mussten auf dem Webserver die Perl-
Module Net::DNS und Net::LDAP nachinstalliert werden. Der Apache2-Webserverdienst
wurde um einen eigenen Virtual Host erweitert, der nun unter der IP-Adresse
192.168.1.18 ansprechbar ist. Das laborinterne Active Directory wurde um die Gruppe
Domänen-Asterisk erweitert, die bei den Benutzern Lutz Grünwoldt und Felix Ogris
als zusätzliche Gruppe eingetragen wurde. Diesen Benutzern wurde zudem jeweils eine
IP-Telefonnummer zugewiesen.

43



8 AUSBLICK

8. Ausblick

8.1. Todo

In dieser Studienarbeit konnten (leider) nicht alle Aspekte zu Voice over IP und Asterisk
betrachtet werden. Die nachfolgend aufgeführten Themen und Ideen könnten daher für
spätere Arbeiten als Grundlage dienen.

8.1.1. ENUM & DUNDi

ENUM und DUNDi dienen zum automatischen Auffinden von Telefonieteilnehmern. Die-
ses ergibt sich unter anderem aus der Problematik, dass jeder Internetnutzer seine eigene
kleine Vermittlungsstelle in Form eines Asteriskservers betreiben kann. Während ENUM
als weitestgehend standarisiertes Verfahren das Domain Name System nutzt, stammt
DUNDi aus der Feder von Mark Spencer und bedarf vor dem Einsatz einer manuellen
Vermaschung der einzelnen Asteriskserver. Neben einer Beschreibung der reinen Funkti-
onsweise und der Konfiguration in Asterisk sollten hierbei vor allem Sicherheitsaspekte
und eventuelle Routingprobleme o.ä. erläutert werden.

8.1.2. AGI Skripte

Das Asterisk Gateway Interface (s. Kapitel 3.3.11) ermöglicht es, eigene Programme aus
dem Dialplan heraus aufzurufen und somit dynamische und benutzergesteuerte Funk-
tionen zu realisieren. Neben der Schnittstellenbeschreibung wären hierbei vor allem in-
teressante Ideen gefragt, die sich realisieren lassen.

8.1.3. Protokolluntersuchung

SIP/RTP und IAX wurden im Rahmen dieser Studienarbeit nur als Blackbox ange-
sehen. Wie sie implementiert sind, wie ihr Verhalten in Weitverkehrsnetzen in Bezug
auf Latenz und Güte sind und welche etwaigen Designfehler bei diesen Protokollen zu
Sicherheitsproblemen führen könnten, stellt ein weiteres, spannendes Thema dar.

8.1.4. Asterisk-Module

Alle Funktionen, Protokolle und Codecs sind als Module in Form von shared objects
(Dateiendung *.so) realisiert. Asterisk kann somit nahezu beliebig erweitert werden.
Neben der notwendigen Interfacebeschreibung wären hier Prototypen und idealerweise
ausprogrammierte, noch dringend benötigte Module erforderlich.

8.2. Version 1.4

Während der Niederschrift dieser Studienarbeit erschien Asterisk in der Version 1.4. Die
neuen oder verbesserten Funktionen konnten jedoch nicht mehr mit einfließen. Für eine
detaillierte Aufzählung aller Änderungen zur Vorgängerversion ist die Datei CHANGES aus
dem Quellpaket von Asterisk 1.4 heranzuziehen. Besonders hervorzuheben sind folgende
Neuerungen:

• AEL, die Asterisk Extension Language, wird nicht mehr als experimentell betrach-
tet und steht somit offiziell als Ersatz für die herkömmliche Syntax der
extension.conf zur Verfügung

• IMAP-Server (Internet Mail Access Protocol) können zur Speicherung von Voice-
mailnachrichten verwendet werden

44



8 AUSBLICK 8.2 Version 1.4

• Zustandsabfragen des Asteriskservers per Simple Network Management Protocol
(SNMP) sind nativ möglich

• Das Asterisk Manager Interface ist nun über einen integrierten HTTP-Server an-
sprechbar.

45



A. Literatur

A. Literatur

[Blank u. Dieterle 2004] Blank, Petra ; Dieterle, Stefan: ENUM-Domains bei
der DENIC eG. Version:March 2004. http://www.denic.de/media/pdf/enum/
veranstaltungen/pre-reader 20040316.pdf, Abruf: 2006-11-05

[Diverse a] Diverse: InterAsterisk eXchange. http://de.wikipedia.org/wiki/
InterAsterisk eXchange, Abruf: 2007-01-12

[Diverse b] Diverse: Session Initiation Protocol. http://de.wikipedia.org/wiki/
Session Initiation Protocol, Abruf: 2007-01-17

[Diverse c] Diverse: SNOM. http://de.wikipedia.org/wiki/SNOM, Abruf: 2007-01-
21

[Diverse d] Diverse: Telephone Number Mapping. http://de.wikipedia.org/wiki/
ENUM, Abruf: 2007-01-17

[Diverse e] Diverse: voip-info.org. http://http://www.voip-info.org/, Abruf: 2007-
01-21. – Anmerkung des Autors: das Voice over IP-Wiki

[Gurow 2005] Gurow, Lars: Snom bringt kostenloses VoIP-
Softphone. Version: March 2005. http://www.netzwelt.de/news/
70233-snom-bringt-kostenloses-voipsoftphone.html, Abruf: 2007-01-17

[Meggelen u. a. 2005] Meggelen, Jim V. ; Smith, Jared ; Madsen, Leif: Asterisk - The
Future of Telephony. Version: September 2005. http://www.nufone.net/downloads/
asteriskdocs/AsteriskTFOT.zip, Abruf: 2007-01-12. ISBN 0–596–00962–3

[Schildt 2004] Schildt, Holger: VoIP mit IAX. Version:April 2004. http://archiv.
tu-chemnitz.de/pub/2004/0051/, Abruf: 2007-01-12

46

http://www.denic.de/media/pdf/enum/veranstaltungen/pre-reader_20040316.pdf
http://www.denic.de/media/pdf/enum/veranstaltungen/pre-reader_20040316.pdf
http://de.wikipedia.org/wiki/InterAsterisk_eXchange
http://de.wikipedia.org/wiki/InterAsterisk_eXchange
http://de.wikipedia.org/wiki/Session_Initiation_Protocol
http://de.wikipedia.org/wiki/Session_Initiation_Protocol
http://de.wikipedia.org/wiki/SNOM
http://de.wikipedia.org/wiki/ENUM
http://de.wikipedia.org/wiki/ENUM
http://http://www.voip-info.org/
http://www.netzwelt.de/news/70233-snom-bringt-kostenloses-voipsoftphone.html
http://www.netzwelt.de/news/70233-snom-bringt-kostenloses-voipsoftphone.html
http://www.nufone.net/downloads/asteriskdocs/AsteriskTFOT.zip
http://www.nufone.net/downloads/asteriskdocs/AsteriskTFOT.zip
http://archiv.tu-chemnitz.de/pub/2004/0051/
http://archiv.tu-chemnitz.de/pub/2004/0051/


B SOFTWARE

B. Software

B.1. Asteriskserver

SuSE Linux 10.0 ftp://ftp-stud.fht-esslingen.de/Mirrors/ftp.suse.com/pub/suse/
i386/10.0/iso/

Asterisk 1.2.13 http://www.asterisk.org/

Zaptel 1.2.11 http://www.asterisk.org/

Deutsches Sprachset für Asterisk Version 2.0 http://www.stadt-pforzheim.de/asterisk/

PostgreSQL 8.1.5 http://www.postgresql.org

gastman 1.0-RC1 http://ftp.digium.com/pub/gastman/

Flash Operator Panel 0.26 http://www.asternic.org/

mpg123 0.61 http://www.mpg123.de/

FRITZ!Card Kernelmodul für openSuSE 10.2 http://opensuse.fltronic.de/SUSE10
2.htm

B.2. Softphones

X-Lite for Windows 3.0 / X-Lite for Mac OS X 2.0 http://www.counterpath.com

Snom 360 Softphone 5.3 http://www.snom.de

3CX Phone http://www.3cx.com/VOIP/voip-phone.html

Idefisk for Windows 1.37Idefisk for Mac OS X 1.35 http://www.asteriskguru.com/
idefisk/

JackenIAX 1.0beta http://www.jackenhack.com/jackeniax/

Kiax 0.8.5 http://www.kiax.org/

Wengo 2.0 http://www.openwengo.org

Sipps 2.1.6 http://www.nero.com/sippstar/deu/SIPPS Light.html

47

ftp://ftp-stud.fht-esslingen.de/Mirrors/ftp.suse.com/pub/suse/i386/10.0/iso/
ftp://ftp-stud.fht-esslingen.de/Mirrors/ftp.suse.com/pub/suse/i386/10.0/iso/
http://www.asterisk.org/
http://www.asterisk.org/
http://www.stadt-pforzheim.de/asterisk/
http://www.postgresql.org
http://ftp.digium.com/pub/gastman/
http://www.asternic.org/
http://www.mpg123.de/
http://opensuse.fltronic.de/SUSE10_2.htm
http://opensuse.fltronic.de/SUSE10_2.htm
http://www.counterpath.com
http://www.snom.de
http://www.3cx.com/VOIP/voip-phone.html
http://www.asteriskguru.com/idefisk/
http://www.asteriskguru.com/idefisk/
http://www.jackenhack.com/jackeniax/
http://www.kiax.org/
http://www.openwengo.org
http://www.nero.com/sippstar/deu/SIPPS_Light.html


C POSTGRESQL STARTSKRIPT

C. PostgreSQL Startskript

1 #!/ bin /sh
2
3 # chkcon f i g : 2345 90 10
4
5 cd / | | exit 1
6
7 case ”$1” in
8 s t a r t )
9 sudo −u pgsq l / usr / l o c a l / pgsq l / bin / p g c t l s t a r t −w \

10 −D /usr / l o c a l / pgsq l /data − l / var /tmp/ pg c t l . l og
11 ; ;
12 stop )
13 sudo −u pgsq l / usr / l o c a l / pgsq l / bin / p g c t l stop \
14 −D /usr / l o c a l / pgsq l /data
15 ; ;
16 ∗)
17 echo ”usage : $0 <s t a r t | stop>”
18 exit 1
19 ; ;
20 esac

48



D ASTERISK STARTSKRIPT

D. Asterisk Startskript

1 #!/ bin /sh
2
3 # chkcon f i g : 2345 90 10
4
5 cd / | | exit 1
6
7 case ”$1” in
8 s t a r t )
9 / usr / sb in / a s t e r i s k

10 ; ;
11 stop )
12 / usr / sb in / a s t e r i s k −r −x ” stop g r a c e f u l l y ”
13 ; ;
14 ∗)
15 echo ”usage : $0 <s t a r t | stop>”
16 exit 1
17 ; ;
18 esac

49



E AD2AST

E. AD2Ast

E.1. ad2ast auth.pl

1 #!/ usr / bin / p e r l
2
3 # Fehlerausgabe s c h l i e s s e n
4 close ( s t d e r r ) ;
5
6 # Module e inbinden
7 use MIME: : Base64 ;
8 use Digest : :MD5 (md5 ) ;
9

10 # Deskr iptoren auf Auto−Flush
11 $ | = 1 ;
12
13 # z u f a e l l i g e Bytes e i n l e s en
14 open(FH, ”/dev/urandom” ) or &no ( ) ;
15 &no ( ) unless ( read (FH, $nonce , 60) == 60 ) ;
16 close (FH) ;
17
18 # Nonce an den C l i en t senden
19 print encode base64 ( $nonce , ”” ) . ”\ r \n” ;
20
21 # Benutzernamen und Hash vom Cl i en t l e s en
22 $user = <>;
23 $imposed hash = <>;
24 close ( s td in ) ;
25
26 # Newline s t r i ppen und dekodieren
27 foreach ( $user , $imposed hash ) {
28 &no ( ) unless s/\ r \n$//o ;
29 $ = decode base64 ( $ ) ;
30 }
31
32 # voicemai l . conf e i n l e s en
33 open(FH, ”/ e t c / a s t e r i s k / vo i c ema i l . conf ” ) or &no ( ) ;
34 @config = map { s/\ r | \n// s g i o ; $ } <FH>;
35 close (FH) ;
36
37 # voicemai l . conf parsen
38 foreach ( @conf ig ) {
39 i f ( / ˆ \ [ ( [ ˆ \ ] ] + ) \ ] $ /) {
40 # Kontext Dek larat ion
41 i f ( $1 eq ” d e f au l t ” ) { $ in con t ex t = 1 ; }
42 else { $ in con t ex t = 0 ; }
43 next ;
44 }
45 # Voicemail−Kontext gefunden?
46 next unless $ in con t ex t ;
47 # gue l t i g e n Eintrag gefunden?
48 next unless /ˆ(\d+)\s∗\=\>\s ∗ ( [ ˆ \ , ]+ ) , / ;
49 # Benutzernummer gefunden?
50 next unless ( $1 eq $user ) ;
51 # Hashsummen ve r g l e i c h en
52 &yes ( ) i f ( $imposed hash eq md5( $user , $2 , $nonce ) ) ;
53 last ;
54 }
55
56 # de f a u l t=ve r b i e t en & Ende
57 &no ( ) ;
58
59
60 ############################################################################
61 # l o k a l e Subroutinen #
62 ############################################################################
63
64 sub no ( ) { print ”no\ r \n” ; exit 1 ; }
65 sub yes ( ) { print ”ok\ r \n” ; exit 0 ; }

50



E AD2AST E.2 ad2ast dial.pl

E.2. ad2ast dial.pl

1 #!/ usr / bin / p e r l
2
3 # Module e inbinden
4 use MIME: : Base64 ;
5 use IO : : Socket ;
6 use DBI ;
7 use Digest : :MD5 (md5 ) ;
8
9 # Subroutinen und Konf igurat ion e in l e s en

10 require ” ad2ast subs . p l ” ;
11
12 # Deskr iptoren auf Auto−Flush
13 $ | = 1 ;
14
15 # CGI−Parameter e i n l e s en
16 i f ($ENV{REQUESTMETHOD} =˜ /ˆ post$ / i ) {
17 read (STDIN, $po s t s t r i n g , $ENV{CONTENT LENGTH} ) ;
18 }
19 else {
20 $po s t s t r i n g = $ENV{QUERY STRING} ;
21 }
22
23 # CGI−Parameter in einen Perl−Hash wandeln
24 &ht tp va r s ( $po s t s t r i n g , \%http pos t ) ;
25
26 # Username + Passwort bestimmen . . .
27 i f ( $ht tp pos t { ac t i on } eq ” l o g i n ” ) {
28 # . . . beim Login aus den Eingabe fe ldern
29 $user = $ht tp pos t {username } ;
30 $pass = $ht tp pos t {password } ;
31 }
32 e l s i f ( $ht tp pos t { ac t i on }) {
33 # . . . sons t aus dem Cookie
34 ( $user , $pass ) = sp l i t ( / : / , decode base64 (
35 ( sp l i t (/=/ , $ENV{HTTP COOKIE} , 2 ) ) [ 1 ] ) ) ;
36 }
37
38 # Username + Passwort t e s t en , f a l l s n i ch t d ie S t a r t s e i t e au fgeru fen wurde
39 $e r r = &ch e c k c r e d en t i a l s ( $user , $pass ) i f $ht tp pos t { ac t i on } ;
40 $ht tp pos t { ac t i on } = ”” i f $e r r ;
41
42 # Verbindung zum As te r i s k Manager und zur Datenbank aufbauen und
43 # . . . Telefonnummern aus der DB laden , f a l l s n i ch t d ie S t a r t s e i t e oder
44 # . . . d i e Logou t s e i t e gewaeh l t wurden
45 i f ( ( $ht tp pos t { ac t i on } ne ”” ) && ( $ht tp pos t { ac t i on } ne ” logout ” ) ) {
46 $e r r = &manager connect (\ $mgr sock ) ;
47 $e r r = &db connect (\ $dbh ) unless $e r r ;
48 $e r r = &load r e c o rd s (\%records , $dbh ) unless $e r r ;
49 &f a t a l e r r o r ( $ e r r ) i f $e r r ;
50 }
51
52 ############################################################################
53 # Aktionsauswertung #
54 ############################################################################
55
56 i f ( $ht tp pos t { ac t i on } eq ” l o g i n ” ) {
57 # Cookie se t z en und S t a r t s e i t e anzeigen
58 &s e t c o o k i e ( encode base64 ( ” $user : $pass ” , ”” ) ) ;
59 &page s t a r t ( ”Willkommen” , 1 ) ;
60 print ”<p>Hallo , $ r e co rds { $user}−>{name}.</p>\n” ;
61 &page end ( 1 ) ;
62 }
63 e l s i f ( $ht tp pos t { ac t i on } eq ” d i a l l i s t ” ) {
64 # a l l e Telefonnummern ausgeben
65 &d i a l l i s t (\%records , ” Te i l n ehme r l i s t e ” , ”&ac t i on=d i a l l i s t ” ) ;
66 }
67 e l s i f ( $ht tp pos t { ac t i on } eq ” search ” ) {
68 # Suchmaske
69 &page s t a r t ( ”Teilnehmer suchen” , 1 ) ;

51



E AD2AST E.2 ad2ast dial.pl

70 print ”<form method=\”POST\”>\n” .
71 ”<input type=\”hidden \” name=\”ac t i on \” value=\”dosearch\”>\n” .
72 ”<tab le><tr><td>Name:</td>” .
73 ”<td><input type=\” text \” name=\”name\” value=\”∗\”></td></tr >\n” .
74 ”<tr><td>Email :</td>” .
75 ”<td><input type=\” text \” name=\”mail \” value=\”∗\”></td></tr >\n” .
76 ”<tr><td>Tele fon :</td>” .
77 ”<td><input type=\” text \” name=\”phone\” value=\”∗\”></td></tr >\n” .
78 ”</table><br>\n<input type=\”submit \” value=\”Suchen\”>\n</form>\n” ;
79 &page end ( 1 ) ;
80 }
81 e l s i f ( $ht tp pos t { ac t i on } eq ” dosearch ” ) {
82 # Suche durchfuehren
83 %s e a r c h r e s u l t = ( ) ;
84 $u r l e x t = ”&act i on=dosearch ” ;
85 foreach ( phone , name , mail ) {
86 $u r l e x t .= ”&$ =$http pos t { $ }” ;
87 # Suche per Regexp
88 $search { $ } = ”ˆ” . $ht tp pos t { $ } . ”\$” ;
89 $search { $ } =˜ s /\∗/\ .\∗/ s g i o ;
90 }
91 foreach $phone ( sort keys %reco rd s ) {
92 $found phone = 0 ;
93 # a l l e Telefonnummern ve r g l e i c h en
94 foreach ( $phone , keys %{$reco rds {$phone}−>{extra phones }}) {
95 next unless / $search {phone }/ ;
96 $found phone = 1 ;
97 last ;
98 }
99 next unless $found phone ;

100 next unless ( $ r e co rds {$phone}−>{name} =˜ / $search {name }/ ) ;
101 next unless ( $ r e co rds {$phone}−>{mail } =˜ / $search {mail }/ ) ;
102 $ s e a r c h r e s u l t {$phone}−>{mail } = $reco rds {$phone}−>{mail } ;
103 $ s e a r c h r e s u l t {$phone}−>{name} = $reco rds {$phone}−>{name } ;
104 $ s e a r c h r e s u l t {$phone}−>{extra phones } = $reco rds {$phone}−>{extra phones } ;
105 }
106 # Ergebnis der Suche ausgeben
107 &d i a l l i s t (\% sea r c h r e s u l t , ” Suchergebnis ” , $u r l ex t ) ;
108 }
109 e l s i f ( $ht tp pos t { ac t i on } eq ” d i a l ” ) {
110 # Anrufen : H i l f e t e x t ausgeben und w e i t e r l e i t e n
111 &page s t a r t ( ”Anrufen” , 1 , ”? ac t i on=dod ia l&exten=$http pos t { exten }” .
112 ”&d i a l e x t en=$http pos t { d i a l e x t en }” ) ;
113 print ”<p>Ihr Te le fon ( Durchwahl $user ) k l i n g e l t nun.<br>Sobald S i e das ” .
114 ”Gespräch angenommen haben , wird versucht , ” .
115 $reco rds { $ht tp pos t { exten}}−>{name} . ” ( Durchwahl ” .
116 $ht tp pos t { d i a l e x t en } . ” ) anzurufen .</p>\n” ;
117 &page end ( 1 ) ;
118 }
119 e l s i f ( $ht tp pos t { ac t i on } eq ” dod ia l ” ) {
120 # Missbrauch abfangen
121 &f a t a l e r r o r ( ” S i e dür fen s i c h n i cht s e l b s t anrufen . ” )
122 i f ( $user eq $ht tp pos t { d i a l e x t en } ) ;
123 $found number = 0 ;
124 foreach (keys %reco rd s ) {
125 $found number = 1 i f ( $ eq $ht tp pos t { d i a l e x t en } ) ;
126 foreach (keys %{$reco rds { $ }−>{extra phones }}) {
127 $found number = 1 i f ( $ eq $ht tp pos t { d i a l e x t en } ) ;
128 }
129 }
130 &f a t a l e r r o r ( ”Unbekannter Teilnehmer . ” ) unless $found number ;
131
132 # Anrufen : Waehlen ( b l o c k i e r t b i s Anrufer abnimmt)
133 $e r r = &manager act ion ( $mgr sock , \ $ r e su l t , ”Command” ,
134 Command => ”show d i a l p l an $user \@$voicemai l context ” ) ;
135 &f a t a l e r r o r ( $ e r r ) i f $e r r ;
136 $channel = $1 i f ( $ r e s u l t =˜ /Dia l \ ( ( [ ˆ \ | \ ) ] + ) / ) ;
137 &f a t a l e r r o r ( ” Ihr Te le fon wird vom Dia lp lan n i cht e r r e i c h t ! ” ) unless $channel ;
138 $e r r = &manager act ion ( $mgr sock , \ $ r e su l t , ” Or ig inate ” ,
139 Channel => $channel ,
140 Exten => $ht tp pos t { d i a l e x t en } ,

52



E AD2AST E.2 ad2ast dial.pl

141 P r i o r i t y => 1 ,
142 Context => $vo i c ema i l context ,
143 Cal l e r ID => ” $user \<$reco rds { $user}−>{name}\>” ) ;
144 &page s t a r t ( ”Anrufen” , 1 ) ;
145 i f ( $ e r r ) {
146 # keine S t anda r d f e h l e r s e i t e h i e r !
147 print ”<p c l a s s =\” e r r o r \”>Der Anruf konnte n i cht p l a t z i e r t werden:</p>\n” .
148 ”<pre s t y l e=\”margin− l e f t : 10 px\”>$e r r \ n$re su l t </pre>\n” .
149 ”<p>Eventue l l haben S i e n i cht abgenommen . . ? ;−)</p>\n” ;
150 }
151 else {
152 print ”<p>Ble iben S i e am Telefon , b i s ” .
153 $reco rds { $ht tp pos t { exten}}−>{name} . ” ( Durchwahl ” .
154 $ht tp pos t { d i a l e x t en } . ” ) abgenommen hat .</p>\n” ;
155 }
156 print ”<p><a h r e f=\” j a v a s c r i p t : back ()\”>Weiter</a></p>\n” ;
157 &page end ( 1 ) ;
158 }
159 e l s i f ( $ht tp pos t { ac t i on } eq ” ext ra ” ) {
160 # Meine ( Extra−)Rufnummern anzeigen
161 &page s t a r t ( ”Meine&nbsp ; Rufnummern” , 1 ) ;
162 print ”<form method=\”POST\”>\n” .
163 ”<input type=\”hidden \” name=\”ac t i on \” value=\”extra−add\”>\n” .
164 ”<t ab l e c l a s s =\” tab l e1 \”>\n<tr><th>Telefon </th>\n<th>Notiz</th>\n” .
165 ”<th>Aktion</th></tr >\n” ;
166 $ co l o r = 1 ;
167 foreach ( sort keys %{$reco rds { $user}−>{extra phones }}) {
168 print ”<tr >\n<td c l a s s =\” td$co l o r\”>$ </td>\n” .
169 ”<td c l a s s =\” td$co l o r\”>$reco rds { $user}−>{extra phones}−>{$ }</td>\n” .
170 ”<td c l a s s =\” td$co l o r\”><a h r e f =\”? ac t i on=extra−de l e t e&phone=$ \”>” .
171 ”Löschen</a></td>\n</tr >\n” ;
172 $ co l o r = 3 − $co l o r ;
173 }
174 # Eingabe f e l d e r fuer neue Rufnummer
175 print ”<tr >\n” .
176 ”<td c l a s s =\” td$co l o r\”>< input type=\” text \” name=\”phone\”></td>\n” .
177 ”<td c l a s s =\” td$co l o r\”>< input type=\” text \” name=\”comment\”></td>\n” .
178 ”<td c l a s s =\” td$co l o r\”>< input type=\”submit \” value=\”Eintragen\”>” .
179 ”</td>\n</tr >\n</table >\n” ;
180 &page end ( 1 ) ;
181 }
182 e l s i f ( $ht tp pos t { ac t i on } eq ” extra−add” ) {
183 # neue Rufnummer e in t ragen
184 $e r r = &db prepare ( $dbh , \$sth , ”INSERT INTO $u s e r t ab l e ” .
185 ” ( phone , extra phone , comment ) ” .
186 ”VALUES (? , ? , ?) ” ) ;
187 &f a t a l e r r o r ( $ e r r ) i f $e r r ;
188 $e r r = &db execute ( $sth , $user , $ht tp pos t {phone } , $ht tp pos t {comment } ) ;
189 &f a t a l e r r o r ( $ e r r ) i f $e r r ;
190 &db f i n i s h ( $sth ) ;
191 &page s t a r t ( ”Meine&nbsp ; Rufnummern” , 1 ) ;
192 print ”<p>Ih re Telefonnummer wurde e inge t ragen .</p>\n” .

193 ”<p><a h r e f =\”? ac t i on=extra\”>Zurück zur Übers icht </a></p>\n” ;
194 &page end ( 1 ) ;
195 }
196 e l s i f ( $ht tp pos t { ac t i on } eq ” extra−de l e t e ” ) {
197 # Rufnummer loeschen
198 $e r r = &db prepare ( $dbh , \$sth , ”DELETE FROM $us e r t ab l e ” .
199 ”WHERE phone=? AND extra phone=?” ) ;
200 &f a t a l e r r o r ( $ e r r ) i f $e r r ;
201 $e r r = &db execute ( $sth , $user , $ht tp pos t {phone } ) ;
202 &f a t a l e r r o r ( $ e r r ) i f $e r r ;
203 &db f i n i s h ( $sth ) ;
204 &page s t a r t ( ”Meine&nbsp ; Rufnummern” , 1 ) ;
205 print ”<p>Ih re Telefonnummer wurde g e l ö s c h t .</p>\n” .

206 ”<p><a h r e f =\”? ac t i on=extra\”>Zurück zur Übers icht </a></p>\n” ;
207 &page end ( 1 ) ;
208 }
209 e l s i f ( $ht tp pos t { ac t i on } eq ” logout ” ) {
210 # Cookie loeschen und Logou t s e i t e anzeigen
211 &de s t r oy cook i e ( ) ;

53



E AD2AST E.2 ad2ast dial.pl

212 &page s t a r t ( ”Abmeldung” ) ;
213 &c en t e r p a g e s t a r t ( ”Abmeldung” ) ;
214 print ”<p>S i e haben s i c h vom System abgemeldet .</p>\n” .
215 ”<p><a h r e f=\” ad2a s t d i a l . p l\”>Hier können S i e s i c h neu anmelden . ” .
216 ”</a></p>\n” ;
217 &cente r page end ( ) ;
218 &page end ( ) ;
219 }
220 else {
221 # Defau l t : Log in s e i t e anzeigen , e v e n t u e l l mit Feh l e r t e x t
222 &log in page ( $e r r ) ;
223 }
224
225 # Verbindungen abbauen
226 i f (defined $dbh ) {
227 &db di sconnect ( $dbh ) ;
228 &manager disconnect ( $mgr sock ) ;
229 }
230
231 # Programmende
232 exit ( 0 ) ;
233
234
235 ############################################################################
236 # l o k a l e Subroutinen #
237 ############################################################################
238
239 # Verbindung zum Asteriskmanager aufbauen
240 sub manager connect ( )
241 {
242 my $sock = shi f t ;
243 my $ r e s u l t = ”” ;
244
245 $$sock = new IO : : Socket : : INET( PeerAddr => $manager host ,
246 PeerPort => $manager port ,
247 Proto => ” tcp ” )
248 or return ” As t e r i s k manager : $ ! ” ;
249 my $msg = <$$sock >;
250 return &manager act ion ( $$sock , \ $ r e su l t , ”Login” ,
251 Username => $manager user ,
252 Sec r e t => $manager pass ,
253 Events => ” o f f ” ) ;
254 }
255
256 # Verbindung zum Asteriskmanager beenden
257 sub manager disconnect ( )
258 {
259 my $sock = shi f t ;
260 close ( $sock ) ;
261 }
262
263 # Befeh l zum Asteriskmanager abse t zen
264 sub manager act ion ( )
265 {
266 my $sock = shi f t ;
267 my $ r e s u l t = shi f t ;
268 my $act i on = shi f t ;
269 my %kvhash = @ ;
270
271 # Aktion + etwaige Sch lue s s e l −/Wertepaare senden
272 print $sock ”Action : $ac t i on \ r \n” ;
273 while (my ( $key , $value ) = each %kvhash ) {
274 print $sock ”$key : $value \ r \n” ;
275 }
276 print $sock ”\ r \n” ;
277
278 my $ s ta tu s = ”” ;
279 $ $ r e s u l t = ”” ;
280
281 while (<$sock >) {
282 $ $ r e s u l t .= $ ;

54



E AD2AST E.2 ad2ast dial.pl

283 i f ( / ˆ ( [ a−zA−Z]+) : ( [ ˆ\ s ]+)/) {
284 # Status in Form von ”Key : Value”
285 my $key = $1 ;
286 my $value = $2 ;
287 i f ( $key eq ”Response” ) { $ s ta tu s = $value ; }
288 }
289 e l s i f (/ˆ\ s∗$ /) {
290 # Lee r z e i l e markiert Ende , so f e rn wir einen Sta tus haben
291 next i f ! $ s t a tu s ;
292 last unless ( $ s ta tu s eq ”Fol lows ” ) ;
293 }
294 e l s i f (/ˆ−−END COMMAND−−/) {
295 # laengere Ausgaben werden durch ”−−END COMMAND−−” beendet
296 last i f ( $ s ta tu s eq ”Fol lows ” ) ;
297 }
298 }
299 return ”” i f ( ( $ s ta tu s eq ” Success ” ) | | ( $ s ta tu s eq ”Fol lows ” ) ) ;
300 return ” As t e r i s k manager : $ s ta tu s ” ;
301 }
302
303 # zum eigenen Auth−Server verb inden und Username/Passwort v e r i f i z i e r e n
304 sub c h e c k c r e d en t i a l s ( )
305 {
306 my $user = shi f t ;
307 my $pass = shi f t ;
308 my $sock = new IO : : Socket : : INET( PeerAddr => $auth host ,
309 PeerPort => 6666 ,
310 Proto => ” tcp ” )
311 or return $ ! ;
312
313 # Nonce vom Server l e s en
314 my $nonce = <$sock >;
315 $nonce =˜ s/\ r \n$//o or return ” P r o t o k o l l f e h l e r ” ;
316 $nonce = decode base64 ( $nonce ) ;
317
318 # gewuenschten User & s a l t e d Hash schre i ben
319 print $sock encode base64 ( $user , ”” ) . ”\ r \n” .
320 encode base64 (md5( $user , $pass , $nonce ) , ”” ) . ”\ r \n” ;
321 my $ r e s u l t = <$sock >;
322 close ( $sock ) ;
323
324 # Ergebnis auswerten
325 $ r e s u l t =˜ s/\ r \n$//o or return ” P r o t o k o l l f e h l e r ” ;
326 return ”” i f ( $ r e s u l t eq ”ok” ) ;
327 return ” Fa l s cher Benutzername oder Passwort ” i f ( $ r e s u l t eq ”no” ) ;
328 return ” P r o t o k o l l f e h l e r ” ;
329 }
330
331 # a l l e Telefonnummer aus der Datenbank laden
332 sub l o ad r e c o rd s ( )
333 {
334 my $reco rds = shi f t ;
335 my $dbh = shi f t ;
336 my $sth ;
337
338 # Telefonnummern aus dem AD
339 $e r r = &db prepare ( $dbh , \$sth , ”SELECT ∗ FROM $ad tab l e ” ) ;
340 return $e r r i f $e r r ;
341 $e r r = &db execute ( $sth ) ;
342 return $e r r i f $e r r ;
343 while (my $row = $sth−>f e t ch row hash r e f ( ) ) {
344 $records−>{$row−>{phone}}−>{name} = $row−>{name } ;
345 $records−>{$row−>{phone}}−>{mail } = $row−>{mail } ;
346 }
347 &db f i n i s h ( $sth ) ;
348
349 # von den Benutzern ge f ü h r t e Te l e f o n l i s t e n
350 $e r r = &db prepare ( $dbh , \$sth , ”SELECT ∗ FROM $us e r t ab l e ” ) ;
351 return $e r r i f $e r r ;
352 $e r r = &db execute ( $sth ) ;
353 return $e r r i f $e r r ;

55



E AD2AST E.2 ad2ast dial.pl

354 while (my $row = $sth−>f e t ch row hash r e f ( ) ) {
355 $records−>{$row−>{phone}}−>{extra phones}−>{$row−>{extra phone }} =
356 $row−>{comment } ;
357 }
358 &db f i n i s h ( $sth ) ;
359 return ”” ;
360 }
361
362 # dem CGI−Skr i p t uebergebene Variab len in einen Per lhash schre i ben
363 sub ht tp va r s ( )
364 {
365 my $ v a r s s t r i n g = shi f t ;
366 my $ r e t r e f = shi f t ;
367
368 foreach ( sp l i t (/\&/ , $ v a r s s t r i n g ) ) {
369 my ( $key , $value ) = sp l i t (/\=/ , $ ) ;
370 $key =˜ tr/+/ / ;
371 $key =˜ s/%([0−9a−fA−F]{2} ) /pack ( ”C” , hex( $1 ) )/ ge ;
372 $value =˜ tr/+/ / ;
373 $value =˜ s/%([0−9a−fA−F]{2} ) /pack ( ”C” , hex( $1 ) )/ ge ;
374 $ r e t r e f −>{”$key”} = ”$value ” ;
375 }
376 }
377
378 # HTML−Tabe l l e mit Telefonnummern ausgeben
379 sub d i a l l i s t ( )
380 {
381 my $va lues = shi f t ;
382 my $ t i t l e = shi f t ;
383 my $u r l e x t = shi f t ;
384
385 &page s t a r t ( $ t i t l e , 1 ) ;
386 $d i r = ( $ht tp pos t { d i r } eq ” desc ” ? ” asc ” : ” desc ” ) ;
387 print ”<t ab l e c l a s s =\” tab l e1 \”>\n<tr>” .
388 ”<th><a h r e f =\”? s o r t=name&d i r=$d i r $ u r l e x t \”>Name</a></th>\n” .
389 ”<th><a h r e f =\”? s o r t=mail&d i r=$d i r $ u r l e x t \”>Email</a></th>\n” .
390 ”<th><a h r e f =\”? s o r t=phone&d i r=$d i r $ u r l e x t \”>Telefon </a></th>\n” .
391 ”<th>Aktion</th></tr >\n” ;
392 $ co l o r = 2 ;
393 $ so r t = $http pos t { sort } ;
394 $ so r t = ”name” i f ( ( $ so r t ne ”mail ” ) && ( $ so r t ne ”phone” ) ) ;
395 $d i r = ( $ht tp pos t { d i r } eq ” desc ” ? −1 : 1 ) ;
396 foreach ( sort {
397 ( $values−>{$a}−>{$ so r t } cmp $values−>{$b}−>{$ so r t }) ∗ $d i r
398 } keys %$va lues ) {
399 $sk ip = scalar keys %{$values−>{$ }−>{extra phones }} ;
400 $sk ip++;
401 $co l o r = 3 − $co l o r ;
402 print ”<tr >\n” .
403 ”<td rowspan=\”$sk ip \” c l a s s =\” td$co l o r\”>$values−>{$ }−>{name}</td>” .
404 ”<td rowspan=\”$sk ip \” c l a s s =\” td$co l o r\”>$values−>{$ }−>{mail}</td>” .
405 ”<td c l a s s =\” td$co l o r\”>$ </td>\n<td c l a s s =\” td$co l o r\”>” ;
406 i f ( $user ne $ ) {
407 # Benutzer s o l l s i c h n i ch t s e l b s t anrufen koennen
408 print ”<a h r e f =\”? ac t i on=d i a l&exten=$ &d i a l e x t en=$ \”>Anrufen</a>” ;
409 }
410 print ”</td>\n</tr >\n” ;
411 foreach $phone ( sort keys %{$values−>{$ }−>{extra phones }}) {
412 print ”<tr >\n<td c l a s s =\” td$co l o r\”>$phone</td>\n<td c l a s s =\” td$co l o r\”>” ;
413 i f ( $user ne $phone ) {
414 print ”<a h r e f =\”? ac t i on=d i a l&exten=$ &d i a l e x t en=$phone\”>Anrufen</a>” ;
415 }
416 print ”</td>\n</tr >\n” ;
417 }
418 }
419 print ”</table>” ;
420 &page end ( 1 ) ;
421 }
422
423 # Grundgeruest e iner HTML−Se i t e ausgeben
424 sub pag e s t a r t ( )

56



E AD2AST E.2 ad2ast dial.pl

425 {
426 my $ t i t l e = shi f t ;
427 my $menu = shi f t ;
428 my $ r e d i r e c t = shi f t ;
429 my $ a pp t i t l e = ”AD2AST Dia l e r ” ;
430 $ a pp t i t l e .= ” − $ t i t l e ” i f $ t i t l e ;
431 $ r e d i r e c t = ”\n<meta http−equiv=\”Refresh \” content =\”0; u r l=$ r e d i r e c t \”>”
432 i f $ r e d i r e c t ;
433
434 print <<EOF;
435 Content−Type : t ex t /html
436
437 <html>
438 <head>
439 <t i t l e >$app t i t l e </ t i t l e >
440 <s t y l e type=” text / c s s ”>
441 <!−−
442 body {
443 c o l o r : b lack ;
444 background : white ;
445 font−f ami ly : sans−s e r i f ;
446 font−s i z e : 12px ;
447 margin : 0px ;
448 padding : 0px ;
449 }
450 th {
451 background−c o l o r : white ;
452 padding : 2 px ;
453 }
454 . t ab l e1 {
455 background−c o l o r :#fc0 ;
456 }
457 . td1 {
458 background−c o l o r :#a5a5a5 ;
459 padding : 2 px ;
460 }
461 . td2 {
462 background−c o l o r :#d5d5d5 ;
463 padding : 2 px ;
464 }
465 . e r r o r {
466 c o l o r : red ;
467 }
468 . headImg {
469 f l o a t : l e f t ;
470 margin−top : 0 ;
471 margin− l e f t : 0 ;
472 he ight : 86px ;
473 width : 314px ;
474 padding : 3px 3px 3px 18px ;
475 background−c o l o r : #999999;
476 border : 0px s o l i d black ;
477 }
478 . headTxt {
479 f l o a t : l e f t r i g h t ;
480 margin : 0 ;
481 he ight : 86px ;
482 padding : 3px ;
483 background−c o l o r : #999999;
484 text−a l i g n : c en t e r ;
485 font−weight : bold ;
486 font−s i z e : 124%;
487 }
488 //−−>
489 </s ty l e >$ r e d i r e c t
490 </head>
491 <body>
492
493 <div c l a s s=”headImg”>
494 <img s r c=”/ f h l o g o . g i f ” a l t=”FH−Logo” border=”0”>
495 </div>

57



E AD2AST E.2 ad2ast dial.pl

496
497 <div c l a s s=”headTxt”>
498 <br>Labor f&#252; r Angewandte In format ik und Mathematik
499 </div>
500
501 EOF
502 i f ($menu) {
503 print <<EOF;
504 <t ab l e width=”99%” he ight=”79%”>
505 <tr><td va l i gn=”top” he ight=”99%” s t y l e=”border : 1 px s o l i d black ; padding : 5 px ; ”>
506 <p s t y l e=”white−space : nowrap”>Einge loggt&nbsp ; a l s :&nbsp ;
507 $reco rds { $user}−>{name}&nbsp ; ( $user )</p><br>
508 <a h r e f=”? ac t i on=d i a l l i s t ”>Te i lnehmer l i s t e </a><br><br>
509 <a h r e f=”? ac t i on=search ”>Teilnehmer&nbsp ; suchen</a><br><br>
510 <a h r e f=”? ac t i on=extra ”>Meine&nbsp ; Rufnummern</a><br><br>
511 <a h r e f=”? ac t i on=logout ”>Abmelden</a></td>
512 <td width=”99%” he ight=”99%” va l i gn=”top” s t y l e=”padding− l e f t : 5 px”>
513 <h1>$ t i t l e </h1>
514 EOF
515 }
516 }
517
518 # HTML−Se i t e beenden
519 sub page end ( )
520 {
521 my $menu = shi f t ;
522
523 print ”</td></tr></tab le >\n” i f $menu ;
524 print ”</body></html>\n” ;
525 }
526
527 # Feh l e r s e i t e
528 sub f a t a l e r r o r ( )
529 {
530 &page s t a r t ( ” Fehler ” ) ;
531 &c en t e r p a g e s t a r t ( ” Fehler ” ) ;
532 print ”<p c l a s s =\” e r r o r \”>$ [0] </p>\n” ;
533 &cente r page end ( ) ;
534 &page end ( ) ;
535 exit ( 1 ) ;
536 }
537
538 # in HTML mi t t i g & z e n t r i e r t ausgeben
539 sub c e n t e r p a g e s t a r t ( )
540 {
541 my $ t i t l e = shi f t ;
542 print <<EOF;
543 <t ab l e width=”99%” he ight=”79%”>
544 <tr>
545 <td width=”99%” he ight=”99%” a l i g n=” cente r ” va l i gn=”middle ”>
546 EOF
547 print ”<h1>$ t i t l e </h1>\n” i f $ t i t l e ;
548 }
549
550 # mi t t i g & z e n t r i e r t beenden
551 sub cente r page end ( )
552 {
553 print ”</td></tr></tab le >\n” ;
554 }
555
556 # Loginmaske ausgeben
557 sub l o g i n page ( )
558 {
559 my $e r r o r = shi f t ;
560
561 &page s t a r t ( ”Anmeldung” ) ;
562 &c en t e r p a g e s t a r t ( ”Anmeldung” ) ;
563 print ”<p c l a s s =\” e r r o r \”>$er ror </p>\n” i f $e r r o r ;
564 print <<EOF;
565 <p>Willkommen be i <i>Active Di rec to ry to Aster i sk </i> (AD2Ast).<br>
566 Dies i s t e in Demo−System des Labors f ü r Angewandte In format ik und Mathematik

58



E AD2AST E.2 ad2ast dial.pl

567 der FH B i e l e f e l d .<br><br>
568 Mit diesem System können S i e e in e Voice over IP−Verbindung zu einem
569 Gespr ächspartner aufbauen ,<br>
570 s o f e r n dessen Kontaktdaten im labo r i n t e rn en Active Di rec to ry e inge t ragen
571 s ind .<br></p>
572 <form method=”POST” name=” log in fo rm ”>
573 <input type=”hidden” name=” ac t i on ” value=” l o g i n ”>
574 <tab le>
575 <tr><td>Benutzer :</td><td><input type=” text ” name=”username”></td></tr>
576 <tr><td>Passwort :</td><td><input type=”password” name=”password”></td></tr>
577 <tr><td co l span=”2” a l i g n=” cente r ”>
578 <input type=”submit” value=”Einloggen ”></td></tr>
579 </table>
580 </form>
581 <s c r i p t type=” text / j a v a s c r i p t ”>
582 <!−−
583 i f ( document . l og in fo rm . username ) document . l og in fo rm . username . f o cu s ( ) ;
584 //−−>
585 </s c r i p t >
586 EOF
587 &cente r page end ( ) ;
588 &page end ( ) ;
589 }
590
591 # Cookie se t z en
592 sub s e t c o o k i e ( )
593 {
594 print ”Set−Cookie : $cookie name=$ [ 0 ] ; path=$cook i e path \n” ;
595 }
596
597 # Cookie loeschen (= l e e r e s Cookie schre i ben )
598 sub de s t r oy cook i e ( )
599 {
600 &s e t c o o k i e ( ) ;
601 }

59



E AD2AST E.3 ad2ast subs.pl

E.3. ad2ast subs.pl

1 ##############################################################################
2 # Konf igura t ionswer te #
3 ##############################################################################
4
5 ### Sync−Skr i p t + Webfrontend
6 $db type = ”mysql” ;
7 $db host = ” l o c a l h o s t ” ;
8 # $db por t = undef ;
9 $db name = ”astdb” ;

10 $db user = ” a s t e r i s k ” ;
11 $db pass = ” t e s t ” ;
12 $ad tab l e = ” adtb l ” ;
13 $u s e r t ab l e = ” u s r t b l ” ;
14
15 ### Sync−Skr i p t
16 $domain = ”infma−l abor . l o c a l ” ;
17 # @nameservers = ( ”192 .168 .1 .6” , ”192.168.1 .7” ) ;
18 @ldap se rve r s = ( ” 192 . 1 6 8 . 1 . 6 ” ) ;
19 # $base dn = undef ;
20 $bind dn = ”cn=Fe l i x Ogris , ou=Stu f f , ou=User” ;
21 $append base dn to bind dn = 1 ;
22 $bind pw = ”geheim” ;
23 $search dn = ”cn=Domänen−Aster i sk , ou=Global=ou=Groups” ;
24 $append base dn to search dn = 1 ;
25
26 ### Webfrontend
27 $manager host = ” 192 . 1 6 8 . 1 . 4 ” ;
28 $manager port = 5038 ;
29 $manager user = ” ad2ast ” ;
30 $manager pass = ” t e s t ” ;
31 $cookie name = ” ad2a s t i d ” ;
32 $cook i e path = ”/” ;
33 $auth host = ” 192 . 1 6 8 . 1 . 4 ” ;
34
35 ##############################################################################
36 # g l o b a l e Subroutinen #
37 ##############################################################################
38 sub db connect ( )
39 {
40 my $dbh = shi f t ;
41
42 my $dsn = ”DBI : $db type : dbname=$db name” ;
43 $dsn .= ” ; host=$db host ” i f $db host ;
44 $dsn .= ” ; port=$db port ” i f $db port ;
45
46 $$dbh = DBI−>connect ( $dsn , $db user , $db pass ,
47 { RaiseError => 0 , Pr intError => 0 } ) ;
48 return ”Database e r r o r : ” . DBI : : e r r s t r i f DBI : : e r r ;
49 return ”” ;
50 }
51
52 sub db d i sconnect ( )
53 {
54 my $dbh = shi f t ;
55 $dbh−>d i s connec t ( ) ;
56 }
57
58 sub db prepare ( )
59 {
60 my $dbh = shi f t ;
61 my $sth = shi f t ;
62
63 $$sth = $dbh−>prepare (@ ) ;
64 return ”Database e r r o r : ” . $dbh−>e r r s t r i f $dbh−>e r r ;
65 return ”” ;
66 }
67
68 sub db f i n i s h ( )
69 {

60



E AD2AST E.3 ad2ast subs.pl

70 my $sth = shi f t ;
71 $sth−>f i n i s h ( ) ;
72 $sth = undef ;
73 }
74
75 sub db execute ( )
76 {
77 my $sth = shi f t ;
78
79 $sth−>execute (@ ) ;
80 return ”Database e r r o r : ” . $sth−>e r r s t r i f $sth−>e r r ;
81 return ”” ;
82 }
83
84 sub db beg in t r an sa c t i on ( )
85 {
86 my $dbh = shi f t ;
87 $dbh−>begin work ( ) ;
88 return ”Database e r r o r : ” . $dbh−>e r r s t r i f $dbh−>e r r ;
89 return ”” ;
90 }
91
92 sub db end t ransac t i on ( )
93 {
94 my $dbh = shi f t ;
95 $dbh−>commit ( ) ;
96 return ”Database e r r o r : ” . $dbh−>e r r s t r i f $dbh−>e r r ;
97 return ”” ;
98 }

61



E AD2AST E.4 ad2ast sync.pl

E.4. ad2ast sync.pl

1 #!/ usr / bin / p e r l
2
3 # Module e inbinden
4 use Net : :DNS;
5 use Net : :LDAP;
6 use DBI ;
7
8 # Subroutinen und Konf igurat ion e in l e s en
9 require ” ad2ast subs . p l ” ;

10
11 # Base DN + Bind DN bestimmen
12 $base dn = join ( ” , ” , map { ”dc=$ ” } sp l i t ( /\ . / , $domain ) )
13 unless defined $base dn ;
14 $bind dn .= ” , $base dn” i f $append base dn to bind dn ;
15
16 # Search DN bestimmen
17 $search dn .= ” , $base dn” i f $append base dn to search dn ;
18
19 # LDAP Server e rmi t t e l n
20 unless (defined @ldap se rve r s ) {
21 $e r r = &g e t l d a p s e r v e r s ( $domain , \@ldap servers , @nameservers ) ;
22 die $e r r i f $e r r ;
23 }
24
25 # LDAP Server konnekt ieren
26 $ldap = Net : : LDAP−>new(\ @ldap se rve r s ) or die ”$ ! ” ;
27
28 # LDAP Server binden
29 $ r e s u l t = $ldap−>bind ( $bind dn , password => $bind pw ) ;
30 die $ r e su l t−>e r r o r t e x t i f $ r e su l t−> i s e r r o r ;
31
32 # Personen suchen
33 $search = $ldap−>search ( base => $base dn ,
34 scope => ”sub” ,
35 a t t r s => [ ”displayName” , ”mail ” ,
36 ” ipPhone” , #”otherIpPhone ” ,
37 #”telephoneNumber ” , ” otherTelephone ” ,
38 #”homePhone” , ”otherHomePhone” ,
39 #”mobi le ” , ” otherMobi le ”
40 ] ,
41 f i l t e r => ”(&( ipPhone=∗)(memberOf=$search dn ) ) ” ) ;
42
43 # Ergebnis holen
44 $ e n t r i e s = $search−>a s s t r u c t ( ) ;
45
46 # Ergebnis normal i s i eren
47 %ad reco rd s = ( ) ;
48 foreach $dn ( sort keys %$en t r i e s ) {
49 my %values = ( ) ;
50 foreach $a t t r ( sort map { lc ( $ ) } keys %{$en t r i e s −>{$dn }}) {
51 $value = ${ $en t r i e s −>{$dn}−>{$a t t r } } [ 0 ] ;
52 i f ( $a t t r eq ” ipphone” ) {
53 warn ”phone number $value i s used mul t ip l e time”
54 i f exists $ad reco rds { $value } ;
55 $ad reco rds { $value } = \%values ;
56 }
57 else {
58 warn ” ob j e c t $dn has mu l t ip l e $a t t r a t t r i b u t e s ” i f exists $va lues { $a t t r } ;
59 $va lues { $a t t r } = $value ;
60 }
61 }
62 }
63
64 # LDAP Verbindung beenden
65 $ldap−>unbind ( ) ;
66 $ldap−>d i s connec t ( ) ;
67
68 # Datenbank konnekt ieren
69 $e r r = &db connect (\ $dbh ) ;

62



E AD2AST E.4 ad2ast sync.pl

70 die $e r r i f $e r r ;
71
72 # Transak t ionsb lock e i n l e i t e n
73 $e r r = &db beg in t r an sa c t i on ( $dbh ) ;
74 die $e r r i f $e r r ;
75
76 # Bestandsdaten aus der AD Tabe l l e aus l e sen
77 $e r r = &db prepare ( $dbh , \$sth , ”SELECT ∗ FROM $ad tab l e FOR UPDATE” ) ;
78 die $e r r i f $e r r ;
79 $e r r = &db execute ( $sth ) ;
80 die $e r r i f $e r r ;
81 %o ld ad r e c o rd s = %{$sth−>f e t c h a l l h a s h r e f ( ”phone” ) } ;
82 &db f i n i s h ( $sth ) ;
83
84 # Statements zum Einfuegen , Ak tua l i s i e r en und Loeschen vo r b e r e i t en
85 $ i = 0 ;
86 foreach ( ”INSERT INTO $ad tab l e ( phone , mail , name , last mod ) ” .
87 ”VALUES (? , ? , ? , now ( ) ) ” ,
88 ”UPDATE $ad tab l e SET mail=?, name=?, last mod=now( ) WHERE phone=?” ,
89 ”DELETE FROM $ad tab l e WHERE phone=?” ) {
90 $e r r = &db prepare ( $dbh , \ $sth [ $ i ] , $ ) ;
91 die $e r r i f $e r r ;
92 $ i++;
93 }
94
95 # 1. S c h r i t t : a l l e s loeschen , was n i ch t mehr im AD vorhanden i s t
96 foreach $phone (keys %o ld ad r e c o rd s ) {
97 next i f exists $ad reco rds {$phone } ;
98 $e r r = &db execute ( $sth [ 2 ] , $phone ) ;
99 die $e r r i f $e r r ;

100 }
101
102 # 2. S c h r i t t : neue Eintraege aus dem AD ein fuegen und bes tehende a k t u a l i s i e r e n
103 foreach $phone (keys %ad reco rd s ) {
104 $mail = $ad reco rds {$phone}−>{mail } ;
105 $name = $ad reco rds {$phone}−>{displayname } ;
106 i f ( ! exists $o l d ad r e c o rd s {$phone }) {
107 # neuer Eintrag
108 $e r r = &db execute ( $sth [ 0 ] , $phone , $mail , $name ) ;
109 die $e r r i f $e r r ;
110 next ;
111 }
112 # bes tehender Eintrag −> Werte v e r g l e i c h en
113 $o ld ma i l = $o ld ad r e c o rd s {$phone}−>{mail } ;
114 $old name = $o ld ad r e c o rd s {$phone}−>{name } ;
115 i f ( ( $mail ne $o ld ma i l ) | | ( $name ne $old name ) ) {
116 $e r r = &db execute ( $sth [ 1 ] , $mail , $name , $phone ) ;
117 die $e r r i f $e r r ;
118 }
119 }
120
121 # Datenbankverbindung beenden
122 $e r r = &db end t ransac t i on ( $dbh ) ;
123 die $e r r i f $e r r ;
124 foreach (@sth ) {
125 &db f i n i s h ( $ ) ;
126 }
127 &db di sconnect ( $dbh ) ;
128
129 # Programmende
130 exit 0 ;
131
132
133 ##############################################################################
134 # l o k a l e Subroutinen #
135 ##############################################################################
136
137 # IP−Adressen und Portnummern zu LDAP−Servern in einem AD heraus f inden
138 sub g e t l d a p s e r v e r s ( )
139 {
140 my $domain = shi f t ;

63



E AD2AST E.4 ad2ast sync.pl

141 my $ r e tu rn a r ray = shi f t ;
142 my %ldap s e r v e r s = ( ) ;
143
144 # 1. S c h r i t t : SRV−Records holen
145 my $dns r e s = Net : :DNS : : Resolver−>new ( ) ;
146 $dns res−>nameservers (@ ) unless ($# < 0 ) ;
147 my $dns pkt = $dns res−>query ( ” ldap . t cp . ” . $domain , ”SRV” ) ;
148 return $dns res−>e r r o r s t r i n g unless defined $dns pkt ;
149 foreach my $dns r r ( $dns pkt−>answer ( ) ) {
150 next unless ( $dns rr−>type ( ) eq ”SRV” ) ;
151 my $pr io = $dns rr−>p r i o r i t y ( ) ;
152 my $weight = $dns rr−>weight ( ) ;
153 my $ ta rg e t = $dns rr−>t a r g e t ( ) ;
154 $ l d ap s e r v e r s { $pr io}−>{$weight}−>{$ ta rg e t } = $dns rr−>port ( ) ;
155 }
156
157 # 2. S c h r i t t : SRV−Records s o r t i e r en und IP−Adressen bestimmen
158 foreach my $pr io ( sort { $b <=> $a } keys %ldap s e r v e r s ) {
159 my $ t h i s p r i o = $ l d ap s e r v e r s { $pr io } ;
160 foreach my $weight ( sort { $b <=> $a } keys %$ t h i s p r i o ) {
161 my $ th i s we i gh t = $ th i s p r i o −>{$weight } ;
162 foreach my $ ta rg e t ( sort keys %$th i s we i gh t ) {
163 my $dns pkt = $dns res−>query ( $ ta rg e t ) ;
164 next unless defined $dns pkt ;
165 foreach my $dns r r ( $dns pkt−>answer ( ) ) {
166 next unless ( $dns rr−>type ( ) eq ”A” ) ;
167 # IP : Port gefunden !
168 push @$return array , $dns rr−>address ( ) . ” : $ th i s we ight −>{$ ta rg e t }” ;
169 }
170 }
171 }
172 }
173
174 return ”no LDAP s e r v e r s a v a i l a b l e ” i f ($#$re tu rn a r ray < 0 ) ;
175 return ”” ;
176 }

64



E AD2AST E.5 ad2ast xml.pl

E.5. ad2ast xml.pl

1 #!/ usr / bin / p e r l
2
3 # Module e inbinden
4 use DBI ;
5
6 # Subroutinen und Konf igurat ion e in l e s en
7 require ” ad2ast subs . p l ” ;
8
9 # Datenbank konnekt ieren

10 $e r r = &db connect (\ $dbh ) ;
11
12 # Daten aus dem AD
13 $e r r = &db prepare ( $dbh , \$sth , ”SELECT ∗ FROM $ad tab l e ” ) ;
14 return $e r r i f $e r r ;
15 $e r r = &db execute ( $sth ) ;
16 return $e r r i f $e r r ;
17 while (my $row = $sth−>f e t ch row hash r e f ( ) ) {
18 $reco rds {$row−>{phone}}−>{name} = $row−>{name } ;
19 $ reco rds {$row−>{phone}}−>{mail } = $row−>{mail } ;
20 }
21 &db f i n i s h ( $sth ) ;
22
23 # von den Benutzern ge f ü h r t e Te l e f o n l i s t e n
24 $e r r = &db prepare ( $dbh , \$sth , ”SELECT ∗ FROM $us e r t ab l e ” ) ;
25 return $e r r i f $e r r ;
26 $e r r = &db execute ( $sth ) ;
27 return $e r r i f $e r r ;
28 while (my $row = $sth−>f e t ch row hash r e f ( ) ) {
29 $reco rds {$row−>{phone}}−>{extra phones}−>{$row−>{extra phone }} =
30 $row−>{comment } ;
31 }
32 &db f i n i s h ( $sth ) ;
33 &db di sconnect ( $dbh ) ;
34
35 # XML ausgeben
36 print ”Content−Type : t ex t /xml\n\n<?xml ve r s i on =\”1.0\”?>\n<AddressBook>\n” ;
37 foreach ( sort keys %reco rd s ) {
38 my ( $fname , $lname ) = sp l i t (/ / , $ r eco rds { $ }−>{name } ) ;
39 &p r i n t c on t a c t ( $fname , $lname , $ ) ;
40 foreach $phone ( sort keys %{$reco rds { $ }−>{extra phones }}) {
41 &pr i n t c on t a c t ( $fname , $lname , $phone ) ;
42 }
43 }
44 print ”</AddressBook>\n” ;
45
46 # Programmende
47 exit ( 0 ) ;
48
49
50 ############################################################################
51 # l o k a l e Subroutinen #
52 ############################################################################
53
54 # einen Te le fonbuche in t rag ausgeben
55 sub p r i n t c on t a c t ( )
56 {
57 my $fname = shi f t ;
58 my $lname = shi f t ;
59 my $phone = shi f t ;
60
61 print ”<Contact>\n<LastName>$lname</LastName>\n” .
62 ”<FirstName>$fname</FirstName>\n<Phone>\n” .
63 ”<phonenumber>$phone</phonenumber>\n” .
64 ”<accountindex >0</accountindex >\n</Phone>\n</Contact>\n” ;
65 }

65



E AD2AST E.6 ad2ast.sql

E.6. ad2ast.sql

1 −− MySQL Datenbankschema fuer AD2Ast
2
3 CREATE TABLE adtb l (
4 phone TEXT,
5 mail TEXT,
6 name TEXT,
7 last mod DATETIME
8 ) ;
9

10 CREATE TABLE u s r t b l (
11 phone TEXT,
12 extra phone TEXT,
13 comment TEXT
14 ) ;

66



E AD2AST E.7 ad2ast auth

E.7. ad2ast auth

1 # / etc / x ine td . d/ ad2as t auth
2 # des c r i p t i on : Au t h en t i f i z i e r un g s d i en s t fuer AD2Ast
3
4 s e r v i c e ad2ast auth
5 {
6 socke t type = stream
7 pro to co l = tcp
8 port = 6666
9 wait = no

10 s e r v e r = /usr / l o c a l / l i b / ad2ast / ad2ast auth . p l
11 type = UNLISTED
12 user = a s t e r i s k
13 d i s ab l e = no
14 }

67



E AD2AST E.8 ad2ast.conf

E.8. ad2ast.conf

1 # / etc /apache2/ vhos t s . d/ ad2ast . conf
2 # Apache2 Kon f i gura t i onsda t e i fuer den AD2Ast Vi r tua l Host
3
4 <Virtua lHost 192 .168 .1 .18 :80 >
5 ServerAdmin webmaster@host . i n v a l i d
6 ServerName infma−lnxp . fh−b i e l e f e l d . de
7
8 DocumentRoot / srv /www/ad2ast / htdocs
9

10 ErrorLog /var / log /apache2/ ad2ast . e r r o r l o g
11 CustomLog /var / log /apache2/ ad2ast . a c c e s s l o g combined
12
13 HostnameLookups Off
14 UseCanonicalName Off
15 Se rve rS ignature On
16
17 S c r i p tA l i a s / cg i−bin / ”/ srv /www/ad2ast / cg i−bin /”
18
19 <Direc to ry ”/ srv /www/ad2ast / cg i−bin ”>
20 AllowOverride None
21 Options +ExecCGI −Inc lude s
22 Order al low , deny
23 Allow from a l l
24 </Directory>
25
26 <IfModule mod userdir . c>
27 UserDir pub l i c html
28 Inc lude / e t c /apache2/mod userdir . conf
29 </IfModule>
30
31 RedirectMatch 301 ˆ\/$ / cg i−bin / ad2a s t d i a l . p l
32
33 <Direc to ry ”/ srv /www/ad2ast / htdocs ”>
34 Options Indexes FollowSymLinks
35 AllowOverride Al l
36 Order deny , a l low
37 </Directory>
38
39 </VirtualHost>

68



F KONFIGURATIONSDATEIEN

F. Konfigurationsdateien

Nachfolgend sind alle Konfigurationsdateien des Asteriskservers aufgeführt, die gegenüber
einer Standardinstallation verändert wurden.

F.1. cdr pgsql.conf

1 [ g l oba l ]
2 hostname=/tmp
3 port=5432
4 dbname=astdb
5 password=test
6 user=a s t e r i s k
7 tab l e=cdr

69



F KONFIGURATIONSDATEIEN F.2 extensions.conf

F.2. extensions.conf

1 [ d e f au l t ]
2 exten => 2000 ,1 , Dia l ( SIP/gs0 )
3 exten => 2000 ,n , Voicemai l (2000)
4 exten => 2000 ,n , Hangup ( )
5
6 exten => 2001 ,1 , Dia l ( SIP/gs1 )
7 exten => 2001 ,n , Voicemai l (2001)
8 exten => 2001 ,n , Hangup ( )
9

10 exten => 5000 ,1 ,Answer ( )
11 exten => 5000 ,n , VoiceMailMain ( )
12 exten => 5000 ,n , Hangup ( )
13
14 exten => 5000XXXX ,1 , Answer ( )
15 exten => 5000XXXX , n , VoiceMailMain ( ${EXTEN:4} )
16 exten => 5000XXXX , n , Hangup ( )
17
18 exten => 6000X , 1 , Answer ( )
19 exten => 6000X , n , MeetMe( ${EXTEN:4} , i )
20 exten => 6000X , n , Hangup ( )
21
22 exten => 0 . , 1 , Dia l (CAPI/g1 , ${EXTEN:1} )
23 exten => 0 . , n , Hangup ( )
24
25 exten => X . , 1 , Answer ( )
26 exten => X . , n , Zapa t e l l e r ( )
27 exten => X . , n , F e s t i v a l ( This number i s not a s s i gned . )
28 exten => X . , n , Hangup ( )

70



F KONFIGURATIONSDATEIEN F.3 manager.conf

F.3. manager.conf

1 [ g ene ra l ]
2 enabled = yes
3
4 [ ad2ast ]
5 s e c r e t = test
6 deny =0 . 0 . 0 . 0 / 0 . 0 . 0 . 0
7 permit =127 .0 .0 .1
8 permit =192 .168 .1 .0/24

71



F KONFIGURATIONSDATEIEN F.4 meetme.conf

F.4. meetme.conf

1 [ rooms ]
2 conf => 0
3 conf => 1 ,0815

72



F KONFIGURATIONSDATEIEN F.5 modules.conf

F.5. modules.conf

1 ;
2 ; As t e r i s k c on f i gu r a t i on f i l e
3 ;
4 ; Module Loader c on f i g u r a t i on f i l e
5 ;
6
7 [ modules ]
8 auto load=yes
9 ;

10 ; Any modules that need to be loaded be f o r e the As t e r i s k core has been
11 ; i n i t i a l i z e d ( j u s t a f t e r the l o gg e r has been i n i t i a l i z e d ) can be loaded
12 ; us ing ’ pre load ’ . This w i l l f r e qu en t l y be needed i f you wish to map a l l
13 ; module c on f i g u r a t i on f i l e s i n to Realtime storage , s i n c e the Realtime
14 ; d r i v e r w i l l need to be loaded be f o r e the modules us ing those c on f i gu r a t i on
15 ; f i l e s are i n i t i a l i z e d .
16 ;
17 ; An example o f l oad ing ODBC support would be :
18 ; pre load => r e s odbc . so
19 ; pre load => r e s c on f i g odb c . so
20 ;
21 ; I f you want , load the GTK conso l e r i g h t away .
22 ; Don ’ t load the KDE conso l e s i n c e
23 ; i t ’ s not as s oph i s t i c a t e d r i g h t now .
24 ;
25 noload => pbx gtkconso l e . so
26 ; load => pbx gtkconso l e . so
27 noload => pbx kdeconso le . so
28 ;
29 ; Intercom app l i c a t i o n i s obso l e t ed by
30 ; chan oss . Don ’ t load i t .
31 ;
32 noload => app intercom . so
33 ;
34 ; The ’modem’ channel d r i v e r and i t s subdr i v e r s are
35 ; obso l e t e , don ’ t load them .
36 ;
37 noload => chan modem . so
38 noload => chan modem aopen . so
39 noload => chan modem bestdata . so
40 noload => chan modem i4l . so
41 ;
42 load => re s mus iconho ld . so
43 ;
44 ; Load e i t h e r OSS or ALSA, not both
45 ; By de fau l t , load OSS only ( automat i ca l l y ) and do not load ALSA
46 ;
47 noload => chan a l sa . so
48 noload => chan oss . so
49 ;
50 ; Module names l i s t e d in ” g l oba l ” s e c t i o n w i l l have symbols g l o b a l l y
51 ; exported to modules loaded a f t e r them .
52 ;
53 noload => cd r c sv . so
54 noload => cdr custom . so
55 noload => chan mgcp . so
56 noload => chan skinny . so
57 noload => pbx dundi . so
58 [ g l oba l ]
59 chan cap i . so=yes

73



F KONFIGURATIONSDATEIEN F.6 sip.conf

F.6. sip.conf

1 [ g ene ra l ]
2 bind =0 .0 . 0 . 0
3 port=5060
4 d i s a l l ow=a l l
5 a l low=ulaw
6 a l low=alaw
7 a l low=gsm
8 language=de
9

10 [ gs0 ]
11 type=f r i e nd
12 context=de f au l t
13 deny =0.0 .0 .0/0
14 permit =192 .168 .1 .230
15 username=gs0
16 s e c r e t =0002
17 mailbox=2000
18 c a l l e r i d=Grandstream 0 <2000>
19 c an r e i n v i t e=yes
20 host=dynamic
21
22 [ gs1 ]
23 type=f r i e nd
24 context=de f au l t
25 deny =0.0 .0 .0/0
26 permit =192 .168 .1 .231
27 username=gs1
28 s e c r e t =1002
29 mailbox=2001
30 c a l l e r i d=Grandstream 1 <2001>
31 c an r e i n v i t e=yes
32 host=dynamic

74



F KONFIGURATIONSDATEIEN F.7 voicemail.conf

F.7. voicemail.conf

1 [ g ene ra l ]
2 format=wav
3
4 [ d e f au l t ]
5 2000 => 0002 , Grandstream 0 , roo t@ loca lho s t
6 2001 => 1002 , Grandstream 1 , roo t@ loca lho s t

75


	Einleitung
	Aufgabenstellung und Szenarien
	Asterisk
	Kurzvorstellung
	Installation
	Abhängigkeiten
	PostgreSQL
	mpg123
	zaptel
	Asterisk
	ISDN-Karte

	Komponenten und deren Konfiguration
	Dialplan
	Session Initiation Protocol
	IAX / IAX2
	Call Detail Record Engine
	MeetMe
	Voicemail
	Queues
	Asterisk Manager Interface
	Sprachpakete
	Festival
	Weitere Dienste


	Managementtools
	gastman
	Flash Operator Panel

	Endgeräte
	Softphones
	X-Lite
	Snom
	3CX Phone
	JackenIAX
	Idefisk
	Kiax

	Hardphones
	Grandstream
	Snom


	AD2Ast
	ad2ast_sync.pl
	ad2ast_dial.pl
	ad2ast_auth.pl
	ad2ast_xml.pl

	Integration in das Labornetz
	Ausblick
	Todo
	ENUM & DUNDi
	AGI Skripte
	Protokolluntersuchung
	Asterisk-Module

	Version 1.4

	Literatur
	Software
	Asteriskserver
	Softphones

	PostgreSQL Startskript
	Asterisk Startskript
	AD2Ast
	ad2ast_auth.pl
	ad2ast_dial.pl
	ad2ast_subs.pl
	ad2ast_sync.pl
	ad2ast_xml.pl
	ad2ast.sql
	ad2ast_auth
	ad2ast.conf

	Konfigurationsdateien
	cdr_pgsql.conf
	extensions.conf
	manager.conf
	meetme.conf
	modules.conf
	sip.conf
	voicemail.conf


