Studienarbeit
Fachhochschule Bielefeld

Betreuender Dozent: Professor Dr.-Ing. Lutz Griinwoldt

Asterisk — ein Uberblick

Felix J. Ogris (203583)
felix_juergen.ogris@fh-bielefeld.de

23. Januar 2007

Inhaltsverzeichnis Inhaltsverzeichnis

Inhaltsverzeichnis
1. Einleitung 4
2. Aufgabenstellung und Szenarien 5
3. Asterisk 8
3.1, Kurzvorstellung o . oL o 8
3.2. Imstallation e 8
3.2.1. Abhéngigkeiten L 8
3.2.2. PostgreSQL 9
3.23. mpgl23 ..o 10
3.24. zaptel . ..o e 10
3.2.5. Asterisk 11
3.2.6. ISDN-Karte e 11
3.3. Komponenten und deren Konfiguration 11
3.3.1. Dialplan e 12
3.3.2. Session Initiation Protocol 15
333, TAX JTAX2 . . . o o 16
3.3.4. Call Detail Record Engine 17
3.3.5. MeetMe e 19
3.3.6. Voicemail 20
3.3.7. QUEUES e e e e 21
3.3.8. Asterisk Manager Interface 22
3.3.9. Sprachpakete 22
3.3.10. Festival 23
3.3.11. Weitere Dienste 23
4. Managementtools 25
4.1, gastman Lo e 25
4.2. Flash Operator Panel, 25
5. Endgeridte 27
5.1. Softphones e 27
5.1.1. X-Lite . . o o o o e e e 27
5.1.2. Snom e e e 28
5.1.3. 3CX Phone 29
5.1.4. JackenIAX L 29
5.1.5. Idefisk o 30
5.1.6. Kiax o e 31
5.2. Hardphones e 31
5.2.1. Grandstream e 31
5.2.2. SNOM e 33
6. AD2Ast 34
6.1. ad2astsync.pl. 35
6.2. ad2ast_dial.pl 36
6.3. ad2ast.auth.pl. 40
6.4. ad2astxml.pl 40
7. Integration in das Labornetz 42

Inhaltsverzeichnis Inhaltsverzeichnis
8. Ausblick 44
8.1. Todo e 44
8.1.1. ENUM & DUNDI s 44

8.1.2. AGISkripte 44

8.1.3. Protokolluntersuchung 44

8.1.4. Asterisk-Module 44

8.2. Version 1.4 e e e e e e e e 44
A. Literatur 46
B. Software 47
B.1. Asteriskserver 47
B.2. Softphones L 47
C. PostgreSQL Startskript 48
D. Asterisk Startskript 49
E. AD2Ast 50
E.1. ad2ast_auth.plo 50
E.2. ad2ast_dial.plo 51
E.3. ad2astsubs.plo 60
E.4. ad2astsync.pl 62
E.5. ad2astxmlpl . . . oL oL 65
E.6. ad2ast.sql 66
E.7. ad2ast_autho 67
E.8. ad2ast.conf 68
F. Konfigurationsdateien 69
F.1. cdrpgsql.confo 69
F.2. extensions.confo 70
F.3. manager.conf 71
F.4. meetme.conf.o 72
F.5. modules.conf 73
F.6. sip.conf L e 74
F.7. voicemail.conf 75

1 EINLEITUNG

1. Einleitung

Das in dieser Studienarbeit diskutierte Softwarepaket Asterisk stellt eine Telefonanlage
mit zwei grundlegenden Eigenschaften dar: Zum einen wird Asterisk als Open-Source
vertrieben. Es unterliegt der GNU General Public License (GPL) und kann somit von
jedermann weitestgehend frei eingesetzt und modifiziert werden. Zum anderen ist es auf
herkémmlicher PC-Hardware lauffahig, vorzugsweise auf einem x86-kompatiblen System
unter Linux. Fiir Mark Spencer, den Initiator von Asterisk, waren dies im Jahre 1999
auch die Hauptmotive, sich seine eigene Telefonanlage buchstéblich zu programmieren,
da ihm sowohl die Preise als auch die beschriankten Moglichkeiten damals verfiigbarer
Telefonsysteme missfielen. Mit dem Aufkommen von Voice over IP, kurz VolP, wur-
de auch Asterisk um die Moglichkeit erweitert, iiber IP-basierte Netze wie Intranets
oder dem Internet zu telefonieren. Dominierend ist hierbei die Kombination aus SIP
und RTP, dem Session Initiation Protocol bzw. Realtime Transport Protocol. Als End-
gerite fiir Voice over IP kommen entweder sogenannte Softphones, also clientseitige Pro-
gramme, die die Soundkarte bzw. Mikrofon und Kopfhorer eines PCs verwenden, oder
Hardphones in Frage, welche herkémmlichen Telefon dhneln, aber die Gesprachsdaten
iiber ein IP-Netz versenden. Die Verbindung zu (leitungsvermittelnden) Telefonnetzen
kann iiber simple ISDN-Steckkarten erfolgen, sofern sie mittels eines CAPI-Treibers oder
iiber die ISDN4Linux-Schnittstelle vom Betriebssystem unterstiitzt werden. Allerdings
sind pro solcher Karte maximal 2 simultane Gespréche moglich. Mehrere D-Kanéle bie-
ten spezielle Controller der ebenfalls von Mark Spencer gegriindeten Firma Digium, die
ausserdem Interfacekarten fiir analoge Telefonie vertreibt. Neben der reinen Gateway-
funktion zwischen verschiedenen Audiocodecs und Signalingmethoden bietet Asterisk die
Moglichkeit, Warteschlangen oder Queues, wie sie z.B. in Callcentern verwendet werden,
oder Voicemailbozen einzurichten, welche als Anrufbeantworter fungieren. Der Rufnum-
mernplan oder der Dialplan, welcher die Zuordnung von Telefonnummern zu Endgeréten
vornimmt, ist frei konfigurierbar. Somit gleicht der Dialplan vielmehr einer Routingta-
belle. Da Asterisk als gewohnlicher Serverdienst auf einem Linuxrechner lduft, kann es
iiber das sogenannte Asterisk Manager Interface, kurz AMI, sehr einfach angesteuert
werden. Diese Schnittstelle wird in einem Teil der vorliegenden Studienarbeit verwen-
det, um Telefonate zwischen zwei Teilnehmern zu vermitteln. Hierzu wurde eine Software
entwickelt, die Rufnummern, die Benutzern aus einem Active Directory zugeordnet sind,
in eine lokale Datenbank synchronisiert, so dass ein Anwender einen anderen Teilnehmer
komfortabel mittels eines Mausklicks aus einer Weboberfliche heraus anrufen kann.

2 AUFGABENSTELLUNG UND SZENARIEN

2. Aufgabenstellung und Szenarien

Ziel war die Demonstration realisierbarer Szenarien und weitergehender Moglichkeiten,
die sich aus dem Einsatz eines Asterisk-Servers ergeben. Hierzu standen mehrere #ltere
PCs (Pentium 2 400 MHz, 128 MB RAM, IDE-Fesplatte) mit vorinstalliertem SuSE Li-
nux 10.0 und die Netzwerkinfrastruktur im Labor fiir Angewandte Informatik und Ma-
thematik der FH Bielefeld zur Verfiigung. Aus der im Internet verfiigharen Menge von
Softphones sollten vornehmlich diejenigen verwendet werden, die kostenlos erhéltlich und
einsetzbar sind und die zumindest ein uneingeschréanktes Telefonieren ermoglichen. Um
Hardware wie ISDN-Karten oder IP-Telefone beschaffen zu kénnen, standen Geldmittel
in Hohe von bis zu 500 Euro zur Verfligung. Ferner sollte eruiert werden, ob und wie eine
sinnvolle Weiterverwendung eines Asterisk-Servers im Labor und in der Veranstaltung
Netzwerke/ Verteilte Anwendungen (NW) bzw. im neu geschaffenen CCNA-Kurs moglich
ist. Um die einfache Ansteuerung eines Asterisk-Servers iiber das Asterisk Manager In-
terface zu zeigen, wurde zusétzlich eine webbasierte Datenbankanwendung erstellt. Diese
speichert Telefonnummern, welche den in einem Active Directory gepflegten Benutzern
zugeordnet sind, in einer lokalen MySQL-Datenbank. Eine Weboberfliche greift auf diese
Datenbank zu, so dass ein Anwender ohne Wéihlen einer Telefonnummer eine Verbin-
dung von seinem Telefon zu dem des gewiinschten Teilnehmers aufbauen kann.
Ublicherweise wird ein Asterisk-Server als Vermittler zwischen einem oder mehreren

IP-Telefone
(Softphones)

ISDN-Switch Asterisk

+

Q&

ISOM-Telefon IP-Telefone
{(Hardphones)

ISDN P

Abbildung 1: Das realisierte Szenario: Asterisk als Gateway zwischen IP- und ISDN-
Telefonie

hausinternen und hausexternen Netzen eingesetzt. Prinzipiell stehen 3 Arten von Schnitt-
stellen zur Verfiigung: analog, ISDN und IP, so dass sich unter Beachtung aller Kombi-
nationen 49 theoretische Szenarien ergeben (analog und/oder ISDN und/oder IP, sowohl
intern als auch extern). Hieraus wurde das in Abbildung 1 gezeigte Szenario ausgewéhlt,

2 AUFGABENSTELLUNG UND SZENARIEN

da es
e die Demonstration von Hard- und Softphones ermoglicht

e die modellhafte Anbindung an das ISDN-Netzes eines Telekommunikationsbetrei-
bers zeigt

o Asterisk als Protokollumsetzer zwischen der ISDN- und IP-Welt betreibt
e mit moderatem Hardwareaufwand realisierbar ist

e die viel zitierte Konvergenz zwischen Telefon- und Computernetzen zeigt, da hausin-
tern nur noch eine gemeinsame Netzwerkinfrastruktur (hier: IP iiber Ethernet)
bendétigt wird.

Abbildung 2: Grandstream GXP-2000

Abbildung 3: AVM FRITZ!Card PCI

2 AUFGABENSTELLUNG UND SZENARIEN

Zur Simulation eines ISDN-Netzes stand im Labor ein ISDN-Switch der Firma Agfeo
zur Verfiigung. Dieser wurde in Zusammenarbeit mit dem Laboringenieur Herrn Man-
fred Fingberg so konfiguriert, dass an Port 11 und Port 12 ein ISDN-Telefon bzw. der
Asterisk-Server betrieben werden konnten.

Analoge Telefonie wurde nicht weiter beachtet, da es sich um eine riickldufige Tech-
nik handelt und da sie nur mittels spezieller Interfacekarten (s. Kapitel 1) realisieren
lasst. Ebenfalls wurde darauf verzichtet, einen internen S0-Bus zu betreiben, um so ei-
ne eventuell vorhandene ISDN-Installation direkt an den Asterisk-Server anzuschliessen.
Hierfiir wére eine ISDN-Steckkarte notig, deren Chipsatz im sogenannten NT-Modus ar-
beitet und sich gegeniiber ISDN-Telefonen wie eine Vermittlungsstelle verhélt.

Um das geforderte Szenario realisieren zu kénnen, wurden 2 IP-Telefone vom Typ Grand-
stream GXP-2000 (Abbildung 2) sowie eine ISDN-Karte AVM FRITZ!Card PCI v2.1
(Abbildung 3) bestellt.

3 ASTERISK

3. Asterisk

3.1. Kurzvorstellung

Asterisk 1duft als normaler Serverdienst auf einem Linuxrechner. In einer Laborumge-
bung ist der Betrieb mit Superuserrechten, sprich root-Rechten, zu empfehlen. Fiir den
FEinsatz auf einem Produktivsystem sollte hingegen ein eigener Benutzeraccount fiir den
Asterisk-Daemon eingerichtet werden, um so die Kompromittierung des Servers durch
einen Fehler in einem Asterisk-Modul zu vermeiden. Allerdings muss bei Verwendung
eines eigenen Benutzeraccounts gewéhrleistet sein, dass dieser auf alle Konfigurations-
dateien, Spoolverzeichnisse und auf Gerétedateien im Verzeichniss /dev Zugriffsrechte
hat. Der Server wird entweder beim Hochfahren des Systems {iber ein entsprechendes
Skript in /etc/init.d bzw. /etc/rc.d (hier variiert jede Linux-Distribution) oder auf
der Konsole durch den direkten Aufruf von asterisk gestartet, welches im Verzeichnis
/usr/sbin liegt. Konfigurationsdateien werden in /etc/asterisk erwartet. Die eigentli-
chen Funktionen des Servers sind in dynamische Bibliotheken, sogenannte shared objects
(meist mit der Dateiendung .so) ausgelagert. Diese sind unterhalb des Verzeichnisses
/usr/1lib/asterisk gespeichert. Somit kénnen zum einen bestimmte Funktionen kom-
plett ausgeblendet werden, indem man in der Datei /etc/asterisk/modules. conf einen
Eintrag wie noload => modul.so hinzufiigt. Zum anderen kann Asterisk so ohne erneu-
te Kompilierung um eigene Routinen erweitert werden. Zusétzlich werden die Verzeich-
nishierarchien /var/lib/asterisk und /var/spool/asterisk benotigt. Unterhalb von
/var/lib/asterisk werden u.a. Wartemelodien, Ansagetexte und eigene Skripte hinter-
legt, wihrend /var/spool/asterisk temporire Dateien aufnimmt, wie z.B. noch nicht
abgerufene Nachrichten einer Voicemailbox. Die Kommunikation mit ISDN-Karten er-
folgt entweder iiber einen CAPI-Treiber bzw. einer Geriitedatei wie /dev/ttyIO oder,
sofern es sich um eine (Primérmultiplex-)Karte der Firma Digium handelt, mittels eines
Treibers aus dem Zaptel-Paket, welches ebenfalls unter der GPL vertrieben wird.

3.2. Installation
3.2.1. Abhéangigkeiten

Die verwendete Linux-Distribution SuSE 10.0 wird ohne Asterisk-Paket geliefert. Eine
Installation iiber das Softwareverwaltungswerkzeug YaST war daher nicht moglich, so
dass eine Ubersetzung aus den Quelltexten unumggnglich war. Zuvor wurden der Daten-
bankserver PostgreSQL, der MP3-Player mpg123 und die Zaptel-Treiber ebenfalls kom-
piliert und installiert, da sonst der Ubersetzungsvorgang von Asterisk das Fehlen jener
Programme bemerkt und z.B. das Modul zur Anbindung einer PostgreSQL-Datenbank
(cdr_pgsql.so) nicht iibersetzt. Alle weiterhin benétigten Werkzeuge lassen sich iiber
YaST installieren. Dies sind:

e der GNU C Compiler gcc

e Headerdateien und weitere Bibliotheken der Systemlibrary glibc-devel
e den Sourcecode des Linuxkernels kernel-devel

o die Readline-Bibliothek readline und ihre Headerdateien readline-devel
e openssl und openssi-devel

e ncurses und ncurses-devel

3 ASTERISK 3.2 Installation

@ YaST-Kontrollzentrum @ fju—suse.__-f!i'.}

Datei Bearbeiten Hilfe

I " Software Software instllizren oder

— i Online-Update . laschen

[.oal Hardware
Installation der Virtual Machine '(.; o o
i * Installation in Verzzichnis
o sysem @ (XEN) v
Ll . (EusE BusE) .
Netzwerkoe rite Q Installationsquelle wechsain I\\éfl Media-Uberprifung
£ . Vo

#9 Netzwerkdienste
= 7 Patch CD-Update [f’:‘ Systzm-Update
'@ MNovell AppArmor

1“1 Sicherheit und Benutzer

g
R

* Andere

Abbildung 4: YaST

e zIib und zlib-devel

e das Programm dozygen, um die Dokumentation aus dem Asterisk-Quelltext erstel-
len zu konnen (vgl. JavaDoc)

Natiirlich sollten alle vorgeschlagenen Abhingigkeiten ebenfalls installiert werden. Es
empfiehlt sich, fiir die einzelnen Installationsschritte ein separates Verzeichnis namens
src o0.4. im Homeverzeichnis anzulegen und dort alle Quellpakete abzuspeicheren.

3.2.2. PostgreSQL

Das Entpacken, Ubersetzen und Installieren von PostgreSQL gelingt unter Verwendung
folgender Befehle:

tar -xjf postgresql-8.1.5.tar.bz2

cd postgresql-8.1.5

./configure --with-openssl --enable-integer-datetimes
make

make install

Danach wird ein eigener Account fiir den Datenbankserver eingerichtet und ein Verzeich-
nis mit passenden Zugriffsrechten fiir die eigentlichen Daten angelegt:

useradd -c "PostgreSQL server" -s /bin/false -d /usr/local/pgsql \
-g daemon -r pgsql

mkdir /usr/local/pgsql/data

chown pgsql /usr/local/pgsql/data

chmod 700 /usr/local/pgsql/data

Mit dem Programm initdb wird die Datenbank initialisiert. Dieses muss unter dem
Benutzeraccount geschehen, mit dessen Rechten spéiter der PostgreSQL-Server laufen
soll, hier pgsql. Durch die Kommandozeilenoption -W wird man zusétzlich aufgefordert,
ein Masterpasswort fiir den Zugriff auf die Datenbank zu vergeben:

3 ASTERISK 3.2 Installation

sudo -u pgsql -- /usr/local/bin/initdb -U pgsql -W \
/usr/local/pgsql/data

Damit PostgreSQL beim Systemstart hochfihrt, kopiert man das eigens erstellte Skript
pgsql (s. Anhang C in das Verzeichnis /etc/init.d und verkniipft es per Aufruf von
chkconfig -a pgsql im Startprozess des Linuxsystems. Nach einem Reboot oder dem
Aufruf von /etc/init.d/pgsql start sollte nun der PostgreSQL-Server laufen. Fiir
den Einsatz mit Asterisk ist es sinnvoll, einen eigenen Datenbankuser samt eigener Da-
tenbank anzulegen. Hierzu verbindet man sich mit dem Befehl

psql -d templatel -U pgsql und unter Eingabe des oben vergebenen Passwortes auf
den PostgreSQL-Server und setzt nacheinander die Anweisungen

CREATE USER asterisk PASSWORD ’obelix’;
und
CREATE DATABASE astdb OWNER asterisk;

ab. Per Eingabe von \q verldsst man den PostgreSQL-Client wieder. Aus Sicherheits-
griinden sollte der Datenbankserver weitestgehend abgesichert werden. Hierzu lasst man
in der Datei /usr/local/pgsql/data/pg-hba.conf als einzige nicht auskommentierte
Zeile folgende {ibrig:

local all all md5

Somit ist sichergestellt, dass Verbindungen zum PostgreSQL-Server nur {iber einen lo-
kalen Unix-Socket hergestellt werden diirfen und sich User per in der Datenbank hinter-
legtem Passwort authentifizieren miissen.

3.2.3. mpgl23

Die Installation des Kommandozeilen-MP3-Players mpgl23 gestaltet sich recht einfach.
Es geniigen folgende Aufrufe:

tar -xjf mpgl23-0.61.tar.bz2
cd mpgl123-0.61

./configure

make

make install

3.2.4. zaptel

Asterisk benotigt fiir diverse Dienste wie z.B. Konferenzrdume ein Timing-Device, wie es
von Digium-basierten Interfacekarten bereitgestellt wird. Verfiigt der Rechner nicht iiber
solche Interfacekarten, emuliert das Kernelmodul ztdummy unter Verwendung des USB-
Controllers ein derartiges Timing-Device. Die Installation des Zaptel-Treiberpaketes ist
relativ einfach:

tar -xzf zaptel-1.2.11.tar.gz
cd zaptel-1.2.11

make

make install config

Nach einem Reboot oder dem Aufruf von /etc/init.d/zaptel start sollte ein Zaptel-
Kernelmodul wie z.B. ztdummy geladen worden sein, was sich mit dem Aufruf von 1smod
priifen l&sst.

10

3 ASTERISK 3.3 Komponenten und deren Konfiguration

3.2.5. Asterisk

Nach den oben ausgefiihrten Vorbereitungen beschriinkt sich die Installation von Asterisk
auf wenige Schritte. Nach dem Entpacken des heruntergeladenen Quellcodepaketes und
dem Wechsel in das daraus neu erstellte Verzeichnis per Aufrufen von

tar -xzf asterisk-1.2.13.tar.gz
cd asterisk-1.2.13

geniigt der folgende Befehlsdreisatz, um alle notwendigen Komponenten inklusive einer
Beispielkonfiguration zu installieren:

make
make install
make samples

Die Dokumentation des Quellcodes wird iiber den Aufruf von make progdocs instal-
liert. Da Asterisk wie PostgreSQL kein eigenes Startskript fiir SuSE Linux mitbringt,
wird die selbst erstellte Datei asterisk (s. Anhang D) nach /etc/init.d kopiert. Den
obligatorischen Aufruf von chkconfig -a asterisk, um Asterisk im Startprozess des
Linuxsystems zu verankern, sollte man jedoch erst nach Abschluss aller Konfigurations-
arbeiten (s. Kapitel 3.3) vornehmen.

3.2.6. ISDN-Karte

Die Installation der ISDN-Karte gestaltet sich sowohl hardware- als auch softwaretech-
nisch relativ einfach. Im Rechner wird lediglich ein freier 32Bit PCI-Steckplatz benotigt.
Uber Yast werden die beiden Pakete avmfritzcapi und km_fritzcapi installiert, um
Treiber bzw. Kernelmodul dem System hinzuzufiigen. Nach einem Reboot sollten ent-
sprechende Eintrige im Kernellog (Ausgabe von dmesg) zeigen, dass eine FRITZ!Card
erkannt wurde.

3.3. Komponenten und deren Konfiguration

Asterisk besteht aus diversen einzeln konfigurierbaren Komponenten. Jeder Teil des
Telefonieservers wird mittels einer eigenen, im Klartext lesbaren Datei im Verzeichnis
/etc/asterisk gesteuert. Durch den Aufruf von make samples wéhrend der Installati-
on werden alle notwendigen Dateien erstellt und mit einer Bespielkonfiguration versehen.
Diese kénnen als Grundlage fiir eigene Anpassungen dienen. In der Regel wird man jene
Beispiele aber umbenennen (z.B. mv sip.conf sip.conf.orig) und sie beim Anlegen
von neuen, eigenen Steuerdateien nur noch als kurze Befehlsreferenz verwenden.
Wiéhrend der Konfigurationsphase ist es empfehlenswert, Asterisk im Debugmodus (s.
Abbildung 5) direkt auf der Konsole zu starten. Dies erreicht man durch Eingabe von
asterisk -cdfvvv. Somit wird zum einen der Startprozess des Linuxsystems nicht durch
ein eventuell fehlerhaft konfiguriertes Asterisk beeintriachtigt. Zum anderen kann man so
etwaige Fehler und Hinweise beim Hochfahren und Betrieb des Telefonieservers direkt,
sprich ohne Umwege iiber eine Logdatei, erkennen und beheben. Fiir den Produktivein-
satz sollte der (korrekt konfigurierte) Asteriskserver auf jeden Fall vom Betriebssystem
gestartet werden. Mit dem Kommando asterisk -r kann man sich dann auf einen
schon laufenden Server verbinden und analog zu einer Debugsitzung Befehle an Asterisk
absetzen.

11

3 ASTERISK

3.3 Komponenten und deren Konfiguration

Session Edit View Bookmarks

[format_au.sol
Registered file fo
[format_jpeg.sol => (
Registered format
[format_g?23.s0] => (
Registered file fo
[cdr_csuv.sol => (
[cdr_manager.sol => (
Parsing ’etcrastes
[cdr_custon.sol => (
Farsing ’etcrastel

[func_callerid.sol => (

Registered custom
[func_enum.sol => (

Registered custon

Registered custom

Seftings Help

rmat au, extension(s) au

*jpg’ (JPEG (Joint Picture Experts Group))

)
rmat g?23sf, extension(s) g?231g?23sf
)
)
risk/cdr_manager.conf’ : Found

risk/cdr_custon.conf’: Found
function CALLERID

)
function ENUHMLOOKUP
function TXTCIDNAME

[func_uri.sol => (
Registered custon
Registered custom

[cdr_pgsql.sol => ()
Farsing ’/etcrasterisk/cdr_pgsql.conf’:

[app_meetne.sol =>
Parsing ’retcrasterisk/meetme.conf’ :
Registered application 'MeetMeAdmin’
Registered application 'HeetMeCount’
Registered application 'MeetMe”

[app_flash.sol => (
Registered application

[app_page.sol => (
Registered application

[app_zapbarge.sol => (
Registered application

[app_zapras.sol => (
Registered application

[app_zapscan.sol => (
Registered application

ficterisk Ready.

LI>

function URIDECODE
function URIENCODE

Found

Found

'Flash’

’ Page’

’ ZapBarge’
! ZapRas’

’ ZapScan’

Im || shell 1_li5nen No. 2 J

Abbildung 5: Asterisk im Debugmodus auf der Konsole

3.3.1. Dialplan

Das Herzstiick einer Asteriskinstallation ist der sogenannte Dialplan. Mit ihm wird be-
stimmt, ob und wohin ein Teilnehmer beim Anwéhlen einer Telefonnummer weitergeleitet
wird. Der Dialplan ist daher mit einer (statischen) Routingtabelle vergleichbar. Er wird
in der Datei /etc/asterisk/extensions.conf konfiguriert und besteht hauptséchlich
aus sequentiellen Zuordnungen von Telefonnummern zu bestimmten Aktionen. Formal
muss eine solche Zuordnung immer wie folgt strukturiert sein:

exten => <Durchwahl>,<Prioritat>,<Aktion>

Zum Beispiel ordnet folgende Zuweisung der Durchwahl 1234 die Aktion Hangup() zu,
die - ihrem Namen entsprechend - das Telefonat beendet:

exten => 1234,1,Hangup()

Die Prioritédt (in obigem Beispiel ist sie 1) gibt an, in welcher Reihenfolge die einer
Durchwahl zugeordneten Aktionen ausgefiihrt werden sollen:

exten => 12345,1,MP3Player (/mp3/unbekannte_nummer.mp3)
exten => 12345,2,Hangup()

Ruft hier ein Teilnehmer die Nummer 12345 an, so wiirde ihm zunichst vom Aste-
riskserver die MP3-Datei /mp3/unbekannte nummer.mp3 vorgespielt und anschliessend
das Telefonat beendet werden. Um Einschiibe zwischen zwei Aktionen einer Durchwahl
ohne miissiges Inkrementieren aller nachfolgenden Prioritéiten zu ermoglichen, kann statt
expliziter Prioritdten auch der Platzhalter n verwendet werden. Die Abfolge der Aktio-
nen ergibt sich somit aus der Reihenfolge, in der sie im Dialplan aufgefiihrt sind. Also
ist nachfolgendes Beispiel zu obigem &quivalent:

exten => 12345,1,MP3Player (/mp3/unbekannte_nummer.mp3)
exten => 12345,n,Hangup()

12

3 ASTERISK 3.3 Komponenten und deren Konfiguration

Auf jeden Fall ist fiir jede Durchwahl als Startpunkt eine Aktion mit der Prioritét 1
erforderlich. Telefonnummern kénnen wie in den oben gezeigten Beispielen als festste-
hende Folge von Ziffern oder aber als Ausdruck mit Platzhaltern formuliert werden.
Hierbei steht ein X fiir die Ziffern 0 bis 9, Z fiir 1 bis 9, N fiir 2 bis 9 und ein Punkt fiir
ein oder mehrere beliebige Zeichen. Eine Ziffernfolge in eckigen Klammern steht stell-
vertretend fiir genau eine Ziffer aus jener Folge. Derartige Muster miissen im Dialplan
mit einem anfithrenden Unterstrich deklariert werden. Um zum Beispiel zu verhindern,
dass Telefonnummern mit vorangestellter Null angewéhlt werden kénnen, wére folgendes
moglich:

exten => _0.,1,Hangup()

Das néchste Beispiel unterbindet das Wahlen der in Deutschland iiblichen Notrufnum-
mern, sprich 110 und 112:

exten => _11[02],1,Hangup()

Neben der schon vorgestellten Funktion Hangup (), welche das Telefonat beendet, kennt
Asterisk unter anderem folgende Aktionen:

MP3Player(Datei) spielt dem Anrufer die angegebene Datei im MP3-Format vor

Playback(Datei) wie MP3Player (), jedoch muss die Datei in einem nativ von Asterisk
unterstiitzten Format wie pu-Law, A-Law, GSM o.4. vorliegen

Dial(Kanal(&Kanal)(&Kanal) ... (,Wartezeit [s])) leitet den Anrufer zu den ange-
gebenen Kanélen, sprich Endgeréten weiter. Wird von diesen nicht eines nach der
optional genannten Wartezeit abgehoben, geht Asterisk zur néchsten Aktion fiir
diese Durchwahl weiter.

Voicemail(Mailboxnummer) leitet zur angegebenen Voicemailbox um, so dass der Anru-
fer nach einem Begriissungstext (,,Bitte hinterlassen Sie ihre Nachricht nach dem
Ton...“) eine Sprachnotiz aufsprechen kann. Siehe auch Kapitel 3.3.6

VoiceMailMain(Mailboxnummer) leitet zur angegebenen Voicemailbox, um so dass der
Anrufer die aufgesprochenen Nachrichten abhéren und ggf. 16schen kann

MeetMe(Konferenzraumnummer) leitet den Anrufer zum angegebenen Konferenzraum
weiter. Siehe auch Kapitel 3.3.5

Answer() veranlasst Asterisk, das Telefonat anzunehmenen und es selbst mit einer Ak-
tion wie z.B. Playback() oder MeetMe() zu beantworten anstatt es per Dial ()
auf einen anderen Kanal weiterzuleiten

Page(Kanal(&Kanal)(&Kanal) ...) verbindet den Anrufer mit allen angegebenen Kanélen.
Beim Anrufer wird fiir die Dauer des Gespriches der Horer deaktiviert, bei den
angerufenen Teilnehmern das Mikrofon

System(Befehl) fiihrt den angegebenen (Linux-)Befehl aus

FEin Kanal besteht immer aus einem Protokoll und einer Rufnummer oder sonstigen
Teilnehmerkennung, zum Beispiel SIP/freund. Verwendet man diesen Kanal in einem
Dial-Befehl, wiirde Asterisk versuchen, per SIP einen Teilnehmer namens freund zu errei-
chen. Natiirlich muss dieser Teilnehmer in der Konfigurationsdatei sip.conf (s. Kapitel
3.3.2) eingerichtet sein.

13

3 ASTERISK 3.3 Komponenten und deren Konfiguration

Im Dialplan kénnen Aktionen nicht nur anhand der gewiinschten Zielnummer, sondern
auch unter Beriicksichtigung der Herkunft des Anrufes ausgefiihrt oder gar gezielt gefil-
tert werden. Hierzu gibt es sogenannte Kontezte. Diese werden z.B. in der Datei sip. conf
einem oder mehreren Teilnehmern zugeordnet, welche ihre eigene Sicht auf den Dialplan
erhielten. Weist man z.B. einem SIP-Teilnehmer den Kontext darfnix zu, so kénnte
man ihm mit folgendem Dialplan alle abgehenden Anrufe untersagen:

[darfnix]
exten => _.,1,Hangup()

[default]

Fin default-Kontext wird von Asterisk immer gefordert. Zur Vermeidung von Red-
undanzen kann ein Kontext einen anderen einbinden; das entsprechende Schliisselwort
hierfiir lautet include:

[technik]
include => ortsgespraeche
include => ferngespreache

[vertrieb]
include => ortsgespraeche

In obigem Beispiel diirften alle zum Kontext technik gehorenden Teilnehmer Orts- und
Ferngespriche fiithren (sofern sich eben hinter diesen Kontexten entsprechende Aktionen
verbergen), wihrend der Vertrieb nur innerdrtliche Telefonate fithren darf.

Als weitere Erleichterung kénnen im Dialplan Variablen verwendet werden. Wird z.B.
der Kanal SIP/teilnehmerl in mehreren (Dial-)Aktionen verwendet, so ist es sinnvoll,
statt dessen eine aussagekriftige Variable zu vergeben:

[globals]
TEILNEHMER1=SIP/teilnehmerl

Der Bezeichner TEILNEHMER1 kann nun in einem Dial-Befehl verwendet werden:
exten => 1234,1,Dial (${TEILNEHMER1}, 20)

Eine besondere Bedeutung hat die vordefinierte Variable EXTEN. In ihr hilt Asterisk die
aktuelle Durchwahl fest, so dass folgende Zeilen dquivalent sind:

exten => 1234,1,Dial(SIP/1234, 20)
exten => 1234,1,Dial (SIP/${EXTEN}, 20)

Zusatzlich kann man nur einen Teil dieser Variablen auswerten lassen:
exten => _5000XXXX,1,VoiceMailMain(${EXTEN:4})

In obigem Beispiel werden die ersten 4 Ziffern der angewéhlten Telefonnummer (also
5000) abgeschnitten und die nur verbleibenden wiirden der Funktion VoiceMailMain
iibergeben. Gibt man den Index als negative Zahl an, z.B. ${EXTEN: -2}, werden hingegen
die letzten 2 Ziffern geliefert.

14

3 ASTERISK 3.3 Komponenten und deren Konfiguration

3.3.2. Session Initiation Protocol

Die Kombination aus Session Initiation Protocol und Realtime Transport Protocol (RTP)
hat derzeit im VoIP-Umfeld die grosste Verbreitung. Das SIP dient lediglich als Signaling-
Protokoll zum Aufbau einer Verbindung zwischen den Teilnehmern, &hnlich dem D-
Kanal im ISDN. RTP hingegen wird als Container fiir die eigentlichen Audiodaten ver-
wendet, die per p-Law, A-Law, GSM usw. codiert sind. Wahrend RTP ein binéres Pro-
tokoll darstellt, ist SIP als Klartextprotokoll dem Hypertext Transport Protocol (HTTP),
welches i.d.R. zum Abruf von Webseiten verwendet wird, sehr dhnlich. Allerdings wur-
de eine Unart des File Transfer Protocol (FTP) iibernommen: SIP hinterlegt in den
Nutzdaten die IP-Adresse, auf der ein Client Verbindungen (z.B. fiir RTP-Strome) an-
nehmen kann. Dies fiihrt besonders bei Verwendung von Network Address Translation
(NAT) auf Routern zwischen zwei SIP-Teilnehmern zu Problemen, da zwar die Adres-
sen der IP-Pakete gedindert werden, nicht aber die in der Payload. Asterisk bietet daher
fir die Konfiguration eines SIP-Clients die Option nat = yes an, mit der jegliche in
SIP-Paketen angegeben IP-Adressen ignoriert werden und nur die tatsédchliche Absen-
deadresse des Clients verwendet wird. In der Datei /etc/asterisk/sip.conf werden
sdmtliche SIP-Verbindungen definiert. Sie ist syntaktisch &hnlich zum Dialplan. Jedoch
definieren Bezeichner in eckigen Klammern keine Kontexte, sondern einzelne SIP-Clients.
Eine besondere Bedeutung hat der mit [general] eingeleitete Abschnitt, mit dem glo-
bale Einstellungen vorgenommen werden:

[generall]
bind=0.0.0.0
port=5060
disallow=all
allow=ulaw
allow=alaw
language=de

Die Parameter bind und port geben an, auf welcher IP-Adresse und welchem Port der
SIP-Server lauschen soll. Hierbei stehen 0.0.0.0 und 5060 fiir alle Netzwerkschnitt-
stellen des Systems bzw. fiir den iiblicherweise verwendeten SIP-Port. Die Direktiven
disallow und allow verbieten bzw. erlauben die Verwendung von speziellen Audioco-
decs, so dass im obigen Beispiel lediglich p- und A-Law zugelassen sind. Zudem wird
Deutsch als Sprache fiir Meniis wie z.B. die Ansage einer Voicemailbox festgelegt. Hierzu
muss natiirlich das entsprechende deutsche Sparchset installiert sein (s. Kapitel 3.3.9),
sonst werden die mit Asterisk installierten englischen Texte verwendet. Die Definition
eines SIP-Clients geschieht wie folgt:

[teilnehmeri1]
context=default
type=friend

Der Bezeichner teilnehmer1 kann nun als Teil eines Kanals im Dialplan verwendet wer-
den, z.B. in der Funktion Dial (SIP/teilnehmerl, 20). Der Kontext bestimmt, welchen
Teil des Dialplans dieser SIP-Client sieht, wie im Kapitel 3.3.1 erlautert. Mit dem Para-
meter type wird bestimmt, wie der Teilnehmer behandelt wird. Folgende drei Optionen
sind moglich:

user Teilnehmer kann nur anrufen, nicht aber angerufen werden

peer Teilnehmer kann nur angerufen werden, nicht aber anrufen

15

3 ASTERISK 3.3 Komponenten und deren Konfiguration

friend Kombination aus user und peer

Die Authentifizierung des Clients erfolgt per Benutzername-/Passwortkombination, wo-
bei der Username nicht zwingend dem Bezeichner fiir den SIP-Client (hier: teilnehmer1)
entsprechen muss:

username=teilnehmer_1
secret=streng_geheim

Ferner gibt es die Optionen permit und deny, mit denen die IP-Adresse oder der Netz-
bereich eingeschréinkt werden kann, aus dem sich der SIP-Client verbinden darf:

deny=0.0.0.0/0
permit=192.168.1.0/24
host=dynamic

Somit darf sich dieser SIP-Client nur aus dem IP-Bereich 192.168.1.0 bis 192.168.1.255
am Server anmelden. Mit der Option host=dynamic wird erzwungen, dass sich der Client
am Server registrieren muss. Viele IP-Telefone kénnen noch nicht abgehorte Nachrichten
auf der Voicemailbox mittels einer LED oder einem Hinweisfeld anzeigen. Hierzu muss
allerdings dem SIP-Teilnehmer eine derartige Mailbox zugeordnet sein:

mailbox=1234

Die angegebene Voicemailbox (hier: 1234) muss natiirlich in der Datei voicemail.conf
eingerichtet sein (s. Kapitel 3.3.6). Mit dem Parameter callerid konnen Name und Te-
lefonnummer, die bei einem angerufenen Teilnehmer im Display erscheinen, vorgegeben
werden:

callerid=Vorname Nachname <4711>

Mit den erlduterten SIP-Optionen kann ein einfaches Laborszenario eingerichtet werden.
Die Vorstellung aller Parameter wiirde an dieser Stelle jedoch den Rahmen sprengen und
wire letztendlich nur eine Abschrift von Quellen wie ().

3.3.3. IAX / IAX2

Das InterAsterisk eXchange oder kurz IAX ist ein binéres, quelloffenes Protokoll, wel-
ches Mark Spencer urspriinglich zur Verbindung von Asterisk-Servern untereinander
entworfen hat. Es umgeht die Schwichen von SIP/RTP wie Probleme bei Verwendung
von NAT, indem es nur einen UDP-Port verwendet und keine IP-Adressen im Daten-
strom einbindet. Da die Version 2 dieses Protokolls das urspriingliche IAX vollsténdig
verdriangt hat, werden heutzutage IAX und IAX2 synonym verwendet. Es existieren in-
zwischen einige Softwareclients fiir [AX, eine Unterstiitzung durch Hardphones ist kaum
gegeben.

Die Konfiguration von TAX unter Asterisk gleicht der von SIP. Zu Beginn der Datei
/etc/asterisk/iax.conf wird ebenfalls ein Abschnitt mit generischen Einstellungen
erwartet:

[generall]
bindport=4569
bindaddr=0.0.0.0
language=de
disallow=all
allow=gsm
allow=ulaw
allow=alaw

16

3 ASTERISK 3.3 Komponenten und deren Konfiguration

Die Kommunikation mit dem ITAX-Server erfolgt iiber UDP-Port 4569; zusétzlich wird
die aus dem Mobilfunk bekannte GSM-Codecfamilie zugelassen. Die Definition einzelner
TAX-Clients ist identisch zu der fiir SIP-Clients:

[teilnehmer2]

context=default

type=friend
username=teilnehmer?
secret=streng_geheim
host=dynamic
deny=0.0.0.0/0.0.0.0
permit=192.168.0.0/24
mailbox=5678

callerid=Vorname Nachname <5678>

Uber die Optionen deny bzw. permit kann auch hier eine IP-Filterliste realisiert werden
und somit sehr genau bestimmt werden, aus welchen Netzen sich teilnehmer?2 verbinden
darf.

3.3.4. Call Detail Record Engine

Mit Hilfe der Call Detail Record Engine (CDR) kénnen Metadaten fiir jedes Gesprich
aufgezeichnet werden, so dass z.B. fiir Abrechnungszwecke festgestellt werden kann, wer
wann mit wem wie lange telefoniert hat oder - falls der Angerufene nicht abgenommen
hat - telefonieren wollte. Per default ist CDR aktiviert. Explizit wird es in der Datei
/etc/asterisk/cdr.conf im Abschnitt [general] ein- oder ausgeschaltet:

[general]
enable=yes

Nach einer Standardinstallation loggt Asterisk Verbindungsdaten in zwei Klartextdatei-
en: /var/log/asterisk/cdr-csv/Master.csv und
/var/log/asterisk/cdr-custom/Master.csv. Diese kommaseparierten Listen (comma
separated values, kurz csv) lassen sich mit Programmen wie OpenOffice Calc auslesen.
Komfortabler ist der Einsatz einer SQL-Datenbank wie PostgreSQL. Mit dem Skript
postgres_cdr.sql im Unterverzeichnis contrib/scripts des Asterisk-Quellcodes wird
zunéchst eine Tabelle namens cdr angelegt. Dieses Skript wird wie folgt dem PostgreSQL-
Client psql iibergeben:

psql -d astdb -U asterisk -f postgres_cdr.sql

Nach Eingabe des in Kapitel 3.2.2 vergebenen Passwortes fiir den Asterisk-User steht die
Tabelle cdr zur Verfiigung. Mit der SQL-Anweisung SELECT * FROM cdr im Programm
psql (Aufruf wie gewohnt per psql -d astdb -U asterisk) erhélt man die noch leere Tabelle
samt Feldnamen. Folgene Werte werden von Asterisk aufgezeichnet:

Acctld ein fiir jeden Datensatz eindeutiger numerischer Schliissel, der von der Daten-
bank vergeben wird

calldate Datum und Zeitpunkt, an dem der Datensatz eingetragen wurde, gemeinhin
Datum und Uhrzeit des Gespriachsendes

clid CallerID (Name und Nummer) des Anrufenden

17

3 ASTERISK 3.3 Komponenten und deren Konfiguration

src CallerID (nur Nummer) des Anrufenden

dst die gewdhlte Nummer bzw. Extension

dcontext der Dialplan-Kontext

channel der (temporire) Kanal, der dem anrufenden Gerét zugeordnet wurde
dstchannel der Kanal des angerufenen Teilnehmers

lastapp die zuletzt vom Dialplan wihrend des Gespréiches ausgefithrte Funktion, z.B.
Dial() oder Hangup()

lastdata die Parameter, die der unter lastapp aufgefiihrten Funktion {ibergeben wurden

duration Gesprichsdauer in Sekunden vom Beenden des Wihlens bis zum Auflegen eines
Teilnehmers

billsec Gespriichsdauer in Sekunden vom Abheben des Angerufenen bis zum Auflegen
eines Teilnehmers

disposition Kurzinfo iiber den Exitcode des Gespréches, mégliche Werte sind ANSWERED,
BUSY, NO ANSWER oder FAILED

amaflags Flag fiir Abrechnungszwecke (vgl. Automatic Message Accounting); wird ent-
weder durch den Parameter amaflags in der sip.conf u.i. oder im Dialplan durch
die Funktion SetAMAFlags () gesetzt werden. Mogliche Werte sind default, omit,
billing und documentation

accountcode wie amaflags ebenfalls fiir Abrechnungszwecke, jedoch handelt es sich um
einen frei setzbaren numerischen Wert

uniqueid ein fiir jeden Datensatz eindeutiger numerischer Schliissel, der von Asterisk
vergeben wird

userfield ein beliebig verwendbares Feld, welches z.B. durch die Funktionen
AppendCDRUserField() oder SetCDRUserField() belegt werden kann

Asterisk erwartet die Verbindungsinformationen fiir die PostgreSQL-Datenbank in der
Datei /etc/asterisk/cdr_pgsql.conf. Hier miissen Hostname, ggf. Portnummer, User-
name, Passwort und Datenbank- und Tabellenname hinterlegt sein:

[globall
hostname=/tmp
port=5432
dbname=astdb
password=obelix
user=asterisk
table=cdr

PostgreSQL kann nicht nur {iber einen Internetsocket, sondern auch iiber einen loka-
len Unix-Socket angesprochen werden, was einen kleinen Geschwindigkeitsvorteil bringt.
Hierzu gibt man dem Parameter hostname nicht einen tatsédchlichen Hostnamen oder
eine IP-Adresse, sondern den Namen des Verzeichnisses, in dem der zugehérige Unix-
Socket liegt. Bei einer Standardinstallation von PostgreSQL ist dies /tmp. Natiirlich

18

3 ASTERISK 3.3 Komponenten und deren Konfiguration

miissen Anwendung und Datenbankserver hierbei auf der selben Maschine laufen. Ab-
schliessend sollte noch das Logging in die CSV-Dateien unterbunden werden. Dieses
gelingt nur, wenn man die entsprechenden Module cdr_csv.so und cdr_custom.so in
der Datei /etc/asterisk/modules.conf sperrt:

[modules]
noload => cdr_csv.so
noload => cdr_custom.so

3.3.5. MeetMe

Mit der Anwendung MeetMe werden in Asterisk virtuelle Konferenzriume realisiert. In
diese konnen sich Teilnehmer einwéhlen und wie in einer realen Konferenz miteinan-
der kommunizieren. Die Einrichtung ist relativ einfach. MeetMe-R&ume werden anhand
einer Zahl identifiziert, i.d.R. die Telefonnummer oder Durchwahl, unter der sie zu errei-
chen sind. In der Konfigurationsdatei /etc/asterisk/meetme.conf wird im Abschnitt
[rooms] der Konferenzraum mit der Nummer 2342 wie folgt angelegt:

[rooms]
conf => 2342

FEin solcher Raum kann zusétzlich mit einem Passwort geschiitzt werden:
conf => 2342,4711

Ein Anrufer miisste nun auf seinem Telefon die Ziffernfolge 4711 eingeben, um der Kon-
ferenz beitreten zu kénnen. Im Dialplan steht die Funktion MeetMe () zur Verfiigung, um
einer Durchwahl einen Konferenzraum zuordnen zu kénnen.

exten => 2342,1,Answer ()
exten => 2342,n,MeetMe(2342)
exten => 2342,n,Hangup()

Der Funktion MeetMe() konnen unter anderem folgende, zusétzliche Flags iibergeben
werden:

m Monitormodus, bei dem der Anrufer nur zuhoren, nicht aber selbst reden kann
t Talkmodus, bei dem der Anrufer nur reden, aber nicht zuhoren kann

i der Anrufer muss seinen Namen nennen, mit dem anschliessend den anderen Teil-
nehmern verkiindet wird, dass ein weiterer Benutzer die Konferenz betreten bzw.
verlassen hat

r Recordingmodus, der ein Aufzeichnen der Konferenz als WAV-Datei im Verzeichnis
/var/lib/asterisk/sounds ermoglicht

Um eine Konferenz aufzuzeichnen, bei der sich die Teilnehmer mit Namen identifizieren
miissen, wire also folgender Eintrag im Dialplan nétig:

exten => 2342,n,MeetMe(2342,ir)

19

3 ASTERISK 3.3 Komponenten und deren Konfiguration

3.3.6. Voicemail

Asterisk bietet die Moglichkeit, fiir jeden Benutzer einen passwortgeschiitzten Anrufbe-
antworter einzurichten. Optional kénnen neue Nachrichten per Email verschickt werden.
Voicemailboxen werden in der Datei /etc/asterisk/voicemail. conf konfiguriert. Dort
legt man im Abschnitt [general] das Format fest, in dem Nachrichten aufgezeichnet
und ggf. verschickt werden:

[general]
format=wav

Audiodateien im WAV-Format benétigen zwar mehr Speicherplatz als z.B. GSM-codierte
Daten, sind aber auf den allermeisten Betriebssystemen problemlos abspielbar. Die De-
finition der einzelnen Mailboxen gestaltet sich ebenfalls relativ einfach:

[default]
1234 => 0815,Vorname Nachname,user@domain.tld

Die Voicemailbox 1234 ist hier mit dem Passwort 0815 geschiitzt. Der optionale Name
l4sst lediglich die Anrede in den Emails, die bei neuen Nachrichten an user@domain.tld
versendet werden, personlicher aussehen. Eine einfache Mailbox ohne Emailversand lasst
sich mit der folgenden spartanischen Konfigurationszeile definieren:

6789 => 6969

Die Voicemailbox 6789 wére somit per Passwort 6969 gesichert. Im Dialplan stehen die
Funktionen Voicemail () und VoiceMailMain() zum Aufsprechen bzw. zum Abhoéren
eines Anrufbeantworters zur Verfiigung. Meist soll eine Voicemailbox besprochen werden,
wenn ein angerufener Teilnehmer nach einer gewissen Zeit nicht abnimmt:

exten => 1234,1,Dial(SIP/teilnehmerl, 20)
exten => 1234,n,Voicemail (1234)
exten => 1234,n,Hangup()

Im Beispiel ist der Kanal SIP/teilnehmerl unter der Durchwahl 1234 erreichbar. Wird
das zugehorige Endgerit nicht nach 20 Sekunden abgenommen, kann der Anrufer auf
die Mailbox 1234 sprechen. Das Abhoren der Nachrichten geschieht mittels der Funktion
VoiceMailMain():

exten => 30001234,1,Answer()
exten => 30001234,n,VoiceMailMain(1234)
exten => 30001234,n,Hangup()

Wahlt man die Nummer 30001234 und gibt anschliessend iiber die Tastatur des Telefons
das korrekte Passwort ein (hier: 0815), so gelangt man in das Menii der Mailbox 1234,
welches dem Benutzer alle Optionen erldutert. So konnen mit der Taste 1 neue Nachrich-
ten abgehort und per Druck auf Taste 7 geloscht werden. Damit man im Dialplan nicht
jede Voicemailbox verankern muss, bietet sich die Verwendung der Variablen EXTEN an:

exten => _3000XXXX,1,Answer()
exten => _3000XXXX,n,VoiceMailMain(${EXTEN:4})
exten => _3000XXXX,n,Hangup()

Somit wird der Funktion VoiceMailMain() jeweils die gewéhlte Durchwahl abziiglich
der ersten 4 Ziffern iibergeben. Bei Auswahl einer nicht existenten Mailbox wird man
freundlich auf den Fehler hingewiesen. Ferner sollte man noch einen generischen Eintrag
fiir alle Mailboxen vorsehen:

20

3 ASTERISK 3.3 Komponenten und deren Konfiguration

exten => 3000,1,Answer()
exten => 3000,n,VoiceMailMain()
exten => 3000,n,Hangup()

Wé&hlt man die Nummer 3000, so wird man vor der Passworteingabe aufgefordert, die
Nummer der gewiinschten Mailbox einzugeben.

3.3.7. Queues

Queues stellen Anruferwarteschlangen dar, wie man sie z.B. von Callcentern kennt. Hier-
bei wihlt ein Anrufer eine Gruppenrufnummer und wird dann je nach Queuealgorithmus
z.B. mit einem beliebigen Mitglied der Gruppe oder demjenigen, der zuerst abhebt, ver-
bunden. Analog zu anderen Diensten werden Queues in der Datei
/etc/asterisk/queues.conf eingerichtet:

[gruppe1l]
member => SIP/teilnehmeril
member => SIP/teilnehmer?

Im Beispiel wird die Queue gruppel samt ihren beiden Mitgliedern SIP/teilnehmeri
und SIP/teilnehmer2 konfiguriert. Diese SIP-Kanéle miissen natiirlich ebenfalls in
/etc/asterisk/sip.conf eingerichtet sein. Um einen Anruf auf eine Queue weiter-
leiten zu konnen, existiert im Dialplan die Funktion Queue (), die im folgenden Beispiel
verwendet wird, um die Durchwahl 4000 der gruppel zuzuweisen:

exten => 4000,1,Answer()
exten => 4000,n,Queue (gruppel)
exten => 4000,n,Hangup()

Per default klingeln bei Anwahl einer Queue alle zugeordneten Endgeriite, hier also
SIP/teilnehmerl und SIP/teilnehmer2. Neben diesem ringall genannten Algorithmus
werden von Asterisk noch die folgenden unterstiitzt:

roundrobin leitet jeden Anrufer reihum auf den nichsten Kanal in der Queueliste weiter

leastrecent leitet einen Anrufer auf das Endgerit weiter, welches seit der lingsten Zeit-
spanne nicht mehr von dieser Queue angesprochen wurde

fewestcalls leitet einen Anrufer auf das Endgerit weiter, welches bisher die wenigsten
Anrufen angenommen hat

random leitet ein ankommendes Gesprich auf einen zuféllig ausgewédhlten Kanal weiter
rrmemory ein verbesserter Roundrobin-Algorithmus

Einen alternativen Algorithmus weist man einer Queue mit dem Schliisselwort strategy
Zu:

[gruppe1l]

strategy = fewestcalls
member => SIP/teilnehmerl
member => SIP/teilnehmer2

21

3 ASTERISK 3.3 Komponenten und deren Konfiguration

3.3.8. Asterisk Manager Interface

Das Asterisk Manager Interface (AMI) ist ein Serverdienst, mit dem Telefongespréche
zwischen Teilnehmern aufgebaut, beendet und beobachtet werden kénnen. Es kénnen
ferner Stati von Queues, Voicemailboxen, SIP- und TAX-Clients abgefragt werden. Die
gesamte Kommunikation zwischen einem AMI-Client und Asterisk verwendet ein trivia-
les Klartextprotokoll. Per default werden serverseitig Verbindungsanfragen auf TCP-
Port 5038 erwartet. Die Konfiguration samt Authentifizierungsdetails werden in der
Datei /etc/asterisk/manager.conf vorgenommen. Hier muss zundchst im Abschnitt
[general] der AMI-Server eingeschaltet werden:

[generall]
enabled=yes

Andere Abschnittsbezeichner als general werden als Benutzernamen aufgefasst:

[amiuser]
secret=sehr_geheim

Hier wurde der User amiuser mit dem Passwort sehr_geheim angelegt. Wie in der
iax.conf kann iiber die Parameter deny bzw. permit festgelegt werden, aus welchen
IP-Netzen sich dieser Benutzer verbinden darf:

deny=0.0.0.0/0.0.0.0
permit=127.0.0.1/32

Im Beispiel wird zunéchst der komplette IP-Adressraum gesperrt, um dann lediglich Ver-
bindungen iiber das Loopbackinterface zuzulassen. Abschliessend werden dem Benutzer
noch sdmtliche Rechte zugesprochen:

read = system,call,log,verbose,command,agent,user
write = system,call,log,verbose,command,agent,user

Das Asterisk Manager Interface wird in der Webanwendung A D2Ast verwendet, welche
im Rahmen dieser Studienarbeit erstellt wurde (s. Kapitel 6). Zudem greifen die in
Kapitel 4 vorgestellten Managementtools auch auf diese Schnittstelle zuriick.

3.3.9. Sprachpakete

Asterisk wird mit einem englischen Sprachset geliefert, welches u.a. die gesprochenen
Meniis fiir Voicemailboxen oder Anruferwarteschlangen beinhaltet. Obwohl diese in sehr
deutlichem und leicht zu verstehendem Englisch aufgenommen wurden, bietet sich der
FEinsatz lokalisierter Samples an. So hat die Stadt Pforzheim ein deutsches Sprachpaket
unter der GPL veroffentlich. Das Archiv wird mit folgendem Befehlszweizeiler entpackt
und installiert:

tar -xzf ast_prompts_de_v2_0.tar.gz
cp -av ast_prompts_de_v2_0/var/lib/asterisk/sounds/* \
/var/lib/asterisk/sounds/

Ferner muss in den globalen Sektionen der Konfigurationsdateien (wie z.B. sip.conf
oder iax.conf) der Parameter language=de hinzugefiigt werden.

22

3 ASTERISK 3.3 Komponenten und deren Konfiguration

3.3.10. Festival

Das Programmpaket Festival stellt eine sogenannte text to speech-Anwendung dar, die
Texte in Sprache umwandelt. Auf die vielfiltigen Einstellungen und Optimierungsmog-
lichkeiten wird hier nicht n&her eingegangen, so dass man mit den Standardeinstellun-
gen ausreichende Ergebnisse erzielt, wenn kurze, englischsprachige Sétze synthetisiert
werden. Festival kann entweder iiber das Kommandozeilenprogramm text2wave oder
per Netzwerkverbindung angesprochen werden, sofern es als Serverdienst eingerichtet
ist. Asterisk kann mittels der Dialplanfunktion Festival() einen solchen Server an-
sprechen. Hierfiir muss jedoch die Konfigurationsdatei /etc/festival.scm um folgende
Zeilen ergénzt werden (s.a. contrib/README.festival im Sourcecodeverzeichnis von
Asterisk):

(define (tts_textasterisk string mode)

"(tts_textasterisk STRING MODE)

Apply tts to STRING. This function is specifically designed for

use in server mode so a single function call may synthesize the string.
This function name may be added to the server safe functioms."

(let ((wholeutt (utt.synth (eval (list ’Utterance ’Text string)))))
(utt.wave.resample wholeutt 8000)

(utt.wave.rescale wholeutt 5)

(utt.send.wave.client wholeutt)))

Nun kann man z.B. alle ungiiltigen Durchwahlnummern mit einen entsprechenden Hin-
weis versehen, indem man am Ende des Dialplans folgendes anfiigt:

exten => _X.,1,Answer()

exten => _X.,n,Festival(This is an invalid number.)
exten => _X.,n,Hangup()

Mit diesem catch all-Eintrag bekdme ein Anrufer den Satz ,, This is an invalid number.*
zu horen, wenn er eine Telefonnummer anwéhlt, die nicht zuvor explizit verarbeitet wird.

3.3.11. Weitere Dienste

Die im folgenden dargestellten Dienste wurden im Zuge dieser Studienarbeit nicht tiefer
behandelt. Sie werden hier dennoch knapp erldutert, da sie zum Standardumfang von
Asterisk gehoren und spannende Themengebiete fiir zukiinftige Arbeiten darstellen.

ENUM Mit dem tFElephone NUmber Mapping wird im globalen Domain Name System
(DNS) hinterlegt, wie eine Telefonnummer zu erreichen ist. Im Dialplan steht zur
Abfrage die Funktion ENUMLookup() zur Verfiigung, die bei einer erfolgreichen
Suche im DNS die Variable $ENUM mit einer entsprechenden Kanaldefinition belegt.
Diese wiederum kann dann per Aufruf von Dial() angewéhlt werden.

DUNDi Das Distributed Universal Number Directory ist funktional mit ENUM ver-
wandt. Es handelt sich hierbei jedoch um ein Netzwerkprotokoll, welches von Mark
Spencer zum Auffinden von Telefonteilnehmern iiber das IAX-Protokoll entwickelt
wurde.

AGI Das Asterisk Gateway Interface ermdglicht es, eigene Skripte in Perl, PHP oder
einer nahezu beliebigen Programmiersprache in den Dialplan einzubinden. Die-
se kommunizieren {iber Standardeingabe und -ausgabe sowie per Standardfehler-
stream mit Asterisk. Somit ist es moglich, im Dialplan dynamische Funktionen
oder gar Anbindungen an Datenbanken zu realisieren.

23

3 ASTERISK 3.3 Komponenten und deren Konfiguration

MoH Per Music on Hold konnen Anrufer (z.B. in einer Queue) iiber die Wartezeit
hinweggetrostet werden. Asterisk bietet die Moglichkeit, eigene Musikstiicke zu
verwenden.

24

4 MANAGEMENTTOOLS

4. Managementtools

4.1. gastman

Der GTK Asterisk Manager (gastman) ist ein von Mark Spencer geschriebenes Pro-
gramm, mit dem sich Zustéinde und Ereignisse von Kanélen beobachten und Telefonate
steuern lassen. Als Grafikbibliothek wird das GIMP Toolkit (GTK) verwendet, so dass
primér Linux und Unix-Derivate als Plattform in Frage kommen. Gastman greift auf
das Asterisk Management Interface zuriick, iiber das zwar Stati und Events, aber keine
Auflistung der Endgeréite abgefragt werden kénnen. Daher miissen alle Telefone, Queu-
es, Voicemailboxen usw. zundchst manuell eingerichtet werden. In Abbildung 6 sind dies
die Symbole in der mittleren Spalte. Uber die den jeweiligen Symbolen zugeordneten
Kontextmeniis konnen Gespriche zwischen zwei Teilnehmern initiert oder Telefonate
beendet werden. Zusétzlich verfiigt gastman tiber einen integrierten Asteriskclient.

0 Asterisk Manager at localhost -

File Exten

Graphical View | List view | Call Queues| Command window |

[asbt - Granastream 1) [1p/gsbt-081ac760|
e W

e, L | : %
=] @

[xitemac - x-Lite| [SIPrxlitemac-081a3ba0]

Q7 }K} a0
by ey

(2005 - 3¢x] [s1Pr300-08102010

®

50002005 - Voicemailbox/3CX|
=

B

SIP/3cx-081b2010 (2005) is at 50002005@default:1

Abbildung 6: Gastman

4.2. Flash Operator Panel

Das Flash Operator Panel ist funktional dhnlich zu gastman. Es erlaubt ebenfalls, End-
geridte und Gespriche zu iiberwachen und zu steuern. Jedoch handelt es sich um ei-
ne webbasierte Client-/Serveranwendung. Im Webbrowser wird zu diesem Zweck eine
Flash-Datei geladen, die sich mit einem in Perl geschriebenen Server auf dem Aste-
riskrechner verbindet. Dieser Server wiederum kontaktiert das Asterisk Manager In-
terface. Das Flash Operator Panel erlaubt eine flexible Konfiguration: Buttons kénnen
einzelnen Endgeréiten zugeordnet und mit einem Link zu einer weiterfithrenden Webseite
versehen werden. Dank der Flashoberfliche ist prinzipiell moglich, zwei Endgeréte per
Drag & Drop miteinander zu verbinden. Allerdings stiirzte der auf dem Asteriskrechner
laufende Server des Flash Operator Panels reproduzierbar beim Versuch ab, ein Gesprich
zwischen einem Hard- und einem Softphone zu initiieren. Ebenso war es nicht moglich,
ein Telefonat zu einem MeetMe-Raum herzustellen. Daher wurden weitere Tests mit dem

25

4 MANAGEMENTTOOLS 4.2 Flash Operator Panel

Flash Operator Panel nicht unternommen und statt dessen empfiehlt der Autor dieser
Studienarbeit, spéitere Versionen der Software zu evaluieren.

@0@
©
@ Grandstream 1 @

(© 192.168.0.12

@ X-Lite Mac @
[+]
@ MeetMe Room 0&

No timeout (]

Abbildung 7: Flash Operator Panel

26

5 ENDGERATE

5. Endgerdte

5.1. Softphones

Video | 7 Calls & Contacts
hd a Available

High-compression codecs W Confacts ¥
Secure calls, QoS support i a | X
Outlook™ integration s . gl B Name 4 |

B lines, Transfer Friends

S12EW09 [T

Home
Work

(]

Jlasmolg @ | slleq

| © rict Sending Yidso | Start

P d b
COUNTERPATH
AEE

Abbildung 8: X-Lite unter Microsoft Windows

Softphones sind clientseitige Programme, die unter Verwendung einer im PC instal-
lierten Soundkarte samt Headsets ein Telefon nachbilden. Die meisten Softphones ver-
wenden SIP/RTP, um sich mit einem Asteriskserver zu verbinden. Nur wenige Clients
unterstiitzen IAX. Einen Zwitter, der beide Welten kombiniert, sucht man vergeblich.
Ebenso fehlen zumindest bei kostenlos erhéltlichen Programmen wiinschenswerte Funk-
tionen wie die Anbindung an LDAP- oder andere Verzeichnisdienste, die als Telefonbuch
fungieren konnen. Generell hinterlieflen die getesteten Softphones beim Autor den Ein-
druck, es handle sich um Chat- oder Instant-Messaging-Clients mit Telefonfunktion.
FEin sehr schlechtes Bild lieferten die als Opensource vertffentlichten SIP-Phones kpho-
ne und linphone. Ersteres reagierte nicht mehr, sobald ein Gespriach aufgebaut war,
wéahrend letzteres nicht einmal fehlerfrei zu compilieren war. Ferner preisen einige An-
bieter ihre Software als frei nutzbaren, standardkonformen SIP-Client an, setzen jedoch
ein wenn auch kostenloses Kundenkonto voraus und sind nur per Tricks wie lokale DNS-
Anderungen oder Eingriff in die Windows-Registry zur Zusammenarbeit mit einem ei-
genen Asteriskserver zu iiberreden. Daher blieben Programme wie WengoPhone oder
Nero Sipps ebenfalls aussen vor. Sehr erfreulich verliefen Tests mit IAX-Clients. Hier
ermoglichten Opensource- und Free-/Sharewareprogramme unter Linux, Windows und
selbst unter Apples Mac OS X (auf dem Notebook des Autors) problemlos Telefonge-
spriche unter Einsatz des Asteriskservers.

5.1.1. X-Lite

Der SIP-Client X-Lite wird von der Firma CounterPath fiir die Betriebssysteme Win-
dows (Abbildung 8), Linux und Mac OS X (Abbildung 9) kostenlos angeboten. Es
handelt sich dabei um die Freewareversion von eyeBeam, einem integrierten SIP- &
Video-over-IP-Client des gleichen Herstellers. Als Besonderheit erméglicht X-Lite das
clientseitige Aufzeichnen von Telefonaten sowie die Konfiguration mehrerer Asterisk-
bzw. SIP-Accounts, um so schneller zwischen einzelnen Anbietern wechseln zu kénnen.

27

5 ENDGERATE 5.1 Softphones

GTI1u G713 GSM

Abbildung 9: X-Lite unter Mac OS X

5.1.2. Snom

Abbildung 10: Snom Softphone

Der Firma Snom ist es gelungen, ihr durchdachtes Hardphone snom 360 als reine
Softwarevariante fiir Windows (Abbildung 10) zu verdffentlichen, die fiir private Zwecke
frei nutzbar ist. Zwar wurde die Bedienung des Hardphones 1:1 auf die des Softphones
iibertragen, dennoch gelingt die Konfiguration problemlos dank des eingebauten Webser-
vers (s. Abbildung 11). Die Software bietet vielfiltige Moglichkeiten:

Unterstiitzung von bis 12 einzelnen SIP-Accounts
12 frei belegbare Sondertasten
32 frei programmierbare Kurzwahlnummern

Aufrufen einer URL bei Ereignissen wie Hérer abnehmen oder Anruf beendet, so
dass z.B. auf einer firmeninternen Webseite angezeigt werden kann, ob ein Benutzer
gerade telefoniert oder nicht gestort werden will

Remotelogging auf einen Syslogserver

Management per SNMP

28

5 ENDGERATE

5.1 Softphones

S000L360Ron Ccho

Fle Edit View History Bookmarks Teols Hep

Willkommen bei Ihrem Telefon!

Genahitz Nummern X
Datum Zait Dauer Kosten Lokale Identitst Nummer
1/17/2007 sia1Pm 0100 ss@23 20005"

Verpasste Anrufe X

Datum zeit Lokale Identitat Hummer

Angenemmene Anrufe X

Datum Zait Dauer Kestan: Lokale Identitst Nummer

Handbuch

snom

© 2000-2005 snom A6

Done

Abbildung 11: Snom Softphone — Weboberflidche

e Import des Adressbuches aus einer CSV-Datei

5.1.3. 3CX Phone

JH[=] E3

3CX Phone

Programm Optionen Hife

f m Akkuele Rufe Zielnufnummer
"l RuFnummer [Daver [codecs I =l
: : 1l2|3 ‘v r'i
4|58
~ |8
7lelog|———1
*|als| OB @
== - [~ anonym il
— 5
Frs) anbuchl Telefonbuch | [—] Nachrichten &V\; Konfiguration |]] Stansnkl
rafil roxy Registrar
- Lisschen ‘ 192.168.0.17
Berutzername Passwort [V Register
[ex [
STUN Server
Angezeigter Hame Realm/Cromain
[ocs ser
okaler Port keine Stille-Erkennung
EE
@cmacs | & speichern
|default (@ [spiacx@192.168.0.17 registered 4

Abbildung 12: 3CX Phone

Das Kernprodukt der Firma 3CX ist ein Telefonieserver fiir Windows. Das sparta-
nische, aber voll funktionale SIP-Phone 3CX Phone (Abbildung 12) ist separat und
frei erhéltlich. Es unterstiitzt ebenfalls mehrere SIP-Accounts und pflegt ein lokales
Adressbuch. Als Besonderheit kann es per SIP Textnachrichten an andere Endgeréte
versenden, gleichwohl kaum eine andere Software dies verarbeiten kann.

5.1.4. JackenlAX

Der TAX-Client JackenIAX (s. Abbildung 13) ist (leider) ein reinrassiges Mac OS X-
Programm. Es ist &hnlich einfach wie der SIP-Client 3CX Phone, ermdoglicht aber die

29

5 ENDGERATE 5.1 Softphones

000 Dialer

1, 2 3 Dial
4 5 6 Answer
7 8 9 .
angup
*® 0 #
Hold
Clear

Abbildung 13: JackenTAX

Einbindung des herkémmlichen Adressbuches, wie es auf jedem System von Apple in-
stalliert ist. Statt eine eigene Adressliste fiir JackenTAX zu pflegen, kénnen hier einfach
per Doppelklick aus dem schon bestehenden Adressbuch Kontakte angerufen werden.

5.1.5. Idefisk

(@ IDEFISK v1.35]
Phone to dial
)

=

‘— (_LINE3)

j0eUEEYE S22

102168017 ¢

192.168.0.17

Abbildung 14: Idefisk unter Mac OS X

Idefisk ist ein frei fiir Windows, Linux und Mac OS X (Abbildung 14) erhéltlicher
ITAX-Client. Als Besonderheit unterstiitzt er lediglich mehrere TAX-Accounts.

30

5 ENDGERATE

5.2 Hardphones

5.1.6. Kiax

bz

IFi\e Wiew Tools Call Help

e

Contacts | Dialpad | Call Register ‘ I

3

2001 (2001)
Call duration 00:00:13

Mic

s |

7

Transfer

| o

[Registered 192 166.0.17 |

Abbildung 15: Kiax unter Linux

Das funktionale Opensource-Pendant zu Idefisk findet sich in Kiaz (s. Abbildung 15),
welches ebenfalls mehrere IAX-Accounts unterstiitzt und lediglich ein separat gepflegtes

Adressbuch fiihrt.

5.2. Hardphones

5.2.1. Grandstream

Abbildung 16: Grandstream GXP-2000

Die IP-Telefone der Firma Grandstream Networks sind preislich attraktive Hardpho-
nes. Aktuell gibt es drei Produktlinien: die einfachen Modelle der Budge Tone-Serie (50 -

31

5 ENDGERATE 5.2 Hardphones

Abbildung 17: Grandstream BudgeTone 200

70 €), die Enterprise-Telefone der Reihe GXP (ca. 100 €) sowie die videoféhigen Gerite
der GXV-Reihe (ca. 250 €, Stand jeweils Januar 2007). Fiir den weiteren Einsatz im
Labor wurden zwei Telefone des Typs GXP 2000 (Abbildung 16) angeschafft. Ferner
standen aus dem privaten Fundus des Autors zwei BudgeTone 101 fiir Testzwecke zur
Verfiigung. All diese Gerite sprechen ausschliesslich STP und unterstiitzen die gingigen
Audiocodecs p-Law, A-Law sowie die der GSM-Familie. Die Erstkonfiguration erfolgt
tiber meniigefithrte Dialoge an den Telefonen. Das BudgeTone verfiigt hierzu iiber ein
LC-Display, das GXP 2000 iiber eine besser lesbare Dot-Matrix-Anzeige. Neben Zuwei-
sung einer festen IP-Adresse samt Netzmaske und Defaultgateway konnen auch Adressen
per DHCP geholt werden. Die weitere Konfiguration kann bequem iiber den eingebau-
ten Webserver erfolgen (Abbildung 18). Zuniichst sollten natiirlich die obligatorischen

Echo.

Fle Edit View History Bookmarks Toos Help

Grandstream Device Configuration
sT1ATUs [INBASICISETTINGSM ADVANCED SETTINGS
(purposely not displayed for security

End User
Password: protection)

IP Address: ¢~ gynamically assigned via DHCP (default) or PPPOE

nnnnnnn

DHCP domain:
DHCP vendor |——————————————
class ID:
PPPOE accoun! t ,—
ID:
PPPOE password:

Prefe d DNS server: [[[[

9
i
o
2
&
5 3
& =S
Q
F
£
g
a
o

5 b
Default Router: [152 [Jis p [T
DNsserver1: [o2 fes p ff

DNSServer2: P p p p
Time Zone: |GMT+1OO (Paris, Amsterdam, Berin, Rome, Vienna, Madiid, Warsaw, Brussels) x|
Daylight Savings & No Yes

‘ime: time;

(if set to Yes, display time will be 1 hour ahead of normal

. @ Year-Month-Day
Date DIsPlay o 004, pay Year

Format:
€ Day-Month-Year

Update | Cancel | _Reboot

Abbildung 18: Weboberflache zur Konfiguration eines Grandstream BudgeTone 100

SIP-Einstellungen vorgenommen werden und die Adresse des Asteriskservers samt User-
name und Passwort konfiguriert werden. Das GXP 2000 unterstiitzt hierbei bis zu 4 un-
abhéngige SIP-Accounts. Zudem konnen sich die Grandstreamgeréte als PPPoE-Client
selbststéndig bei einem (DSL-)Provider einwéhlen. Die Gerite aus der GXP-Serie konnen
sogar als NAT-Router fungieren. Datum und Uhrzeit kénnen per Network Time Protocol

32

5 ENDGERATE 5.2 Hardphones

(NTP) von entsprechenden Server synchronisiert werden. Ebenso ist ein automatisches
Firmwareupdate per HT'TP oder TF'TP moglich. Ferner konnen Gespréche weitergeleitet
bzw. iibergeben und Telefonkonferenzen (ohne Einsatz eines MeetMe-Raumes) eingelei-
tet werden. Dank des eingebauten Lautsprechers samt Mikrofon kann der Anwender frei
und ohne den Hérer in die Hand zu nehmen telefonieren. Das BudgeTone verfiigt iiber
keine Moglichkeit, ein Telefonbuch zu pflegen. Beim GXP 2000 kann eine solche Liste
nicht nur lokal angelegt, sondern auch als XML-Datei von einem Webserver importiert
werden.

5.2.2. Snom

Abbildung 19: snom 360

Die deutsche Firma snom bietet neben ihrem fiir private Verwendung frei zu nutzen-
dem Softphone (s. Kapitel 5.1.2) die drei Hardphones snom 300, snom 320 und das
snom 360 an. Wie auch beim Softphone werden bis zu 12 SIP-Accounts unterstiitzt. Zu-
dem konnen Telefonbiicher per LDAP importiert und die Geréite per SNMP abgefragt
werden.

33

6 AD2AST

6. AD2Ast

Um die Fahigkeiten des Asterisk Manager Interfaces zu demonstrieren, wurde die We-
banwendung AD2Ast entwickelt. Sie synchronisiert Name, Emailadresse und Telefon-
nummer von Benutzerdaten aus einem Active Directory in eine MySQL-Datenbank.
Eine Weboberfliche, sprich ein CGI-Skript greift auf diese Datenbank zu und erméglicht
dem Anwender, komfortabel iiber einen Browser ein Gespréich zwischen seinem Telefon
und dem ausgewéhlten Kontakt herzustellen. Zuvor muss sich der Anwender jedoch an
der Weboberfliche mit Username und Passwort anmelden. Der Username ist identisch
mit der Nummer der Voicemailbox des jeweiligen Anwenders. Als Passwort wird da-
her auch nur dasjenige der entsprechenden Mailbox akzeptiert. Weitere Voraussetzung
ist, dass die Nummer der Mailbox gleich der Durchwahl des Telefons ist, welches dem
Anwender zugeordnet ist, da das CGI-Skript den Dialplan parsen muss, um den Kanal
jenes Telefons zu ermitteln. Dieses Vorgehen ist durch das Asterisk Manager Interface
bedingt. Es kann zwar das Zieltelefon bzw. die Zielnummer als Durchwahl verarbeiten,
das Quelltelefon muss jedoch in der iiblichen Schreibweise wie z.B. SIP/teilnehmer1
angegeben werden. Uber die Weboberfliiche kann jeder Benutzer zusitzliche, nicht im
Active Directory hinterlegte Telefonnummern angeben, unter denen er zu erreichen ist.
Diese werden in einer separaten Tabelle in der MySQL-Datenbank gespeichert. Ferner
werden iiber ein weiteres CGI-Skript alle Daten per XML ausgegeben. Dieses dient zum
Import in das Telefonbuch der Grandstream Hardphones. Es ergibt sich der in Abbil-
dung 20 gezeigte Aufbau. Als Programmier- bzw. Skriptsprache wurde Perl verwendet,
da hierfiir entsprechende DNS- und LDAP-Module zur Abfrage eines Active Directorys
verfiigbar sind. Zudem ist das Verarbeiten von Zeichenketten in Perl relativ einfach. Der
Verlust in der Ausfiihrungsgeschwindigkeit gegeniiber nativ compilierenden Sprachen wie
C wurde in Kauf genommen. Andere Skriptsprachen wie z.B. PHP verfiigen nicht iiber
die geforderten DNS- bzw. LDAP-Funktionen. Der Einsatz von in Java geschriebenen
Servlets hétte an dieser Stelle einen zu hohen Aufwand bedeutet, da neben dem Webser-
ver noch ein spezieller Servletcontainer wie Tomcat erforderlich gewesen wire. Folgende
Perl-Module werden von AD2Ast verwendet und miissen ggf. nachtriglich installiert
werden:

DBI bietet abstrakten Datenbankzugriff
DBD-mysql Datenbanktreiber fiir MySQL
Digest::MD5 stellt Routinen zur Berechnung von MD5-Hashes bereit

10::Socket ermoglicht den Zugriff auf das Socketinterface zur Netzwerkprogrammierung
unter Unix

MIME::Baseb64 stellt Funktionen zur Stringkonvertierung ins Base64-Format bereit
Net::DNS ermdglicht spezielle Anfragen an Nameserver
Net::LDAP stellt Funktionen zum Zugriff auf LDAP-Server bereit

Die auf dem Webserver laufenden Skripte ad2ast_dial.pl, ad2ast_sync.pl und
ad2ast_xml.pl binden jeweils die Datei ad2ast_subs.pl ein. Diese enthilt die Para-
meter zur Datenbankverbindung, Informationen iiber das Active Directory, Daten zur
Konnektierung des Asterisk Manager Interfaces sowie Routinen zum Anbinden und Ab-
fragen der Datenbank.

34

6 AD2AST 6.1 ad2ast_sync.pl

Anwender

ad2ast_auth.pl Asterisk
ad2ast_dial.pl ad2ast_xml.pl

Apache Webserver
MySQL

ad2ast_sync.pl

Active Directory

DMS LDAP

Abbildung 20: Zusammenspiel der Komponenten in der AD2Ast-Umgebung

6.1. ad2ast_sync.pl

Das Skript ad2ast_sync.pl synchronisiert Telefonnumer, Emailadresse und Name von
Benutzern in einem Active Directory in eine MySQL-Datenbank. Die dafiir vorgesehe-
nen Benutzerkonten miissen sich in einer zusétzlichen Gruppe befinden, die durch die
Variable $search_dn angegeben wird. Da ein Active Directory unter anderem aus min-
destens einer DNS-Zone besteht, konnen die zustindigen LDAP-Server entweder direkt
angegeben werden (Variable @ldap_servers) oder aber iiber sogenannte SRV-Records
aus dem DNS bestimmt werden. Hierzu werden die in der Variablen @nameservers vor-
gegebenen Nameserver nach DNS-Eintrdgen der Form _1dap._tcp.Domdne gefragt. Die
Doméne wird hierbei iiber die Variable $domain bestimmt. Die LDAP-Server werden mit
Hilfe den in $bind _dn und $bind_pw angegebenen Usernamen und Passwort konnektiert.
Anschliessend wird nach Objekten gesucht, die iiber das Attribut ipPhone verfiigen und
sich zudem in der o.g. Gruppe befinden. Als Riickgabe dieser LDAP-Suche werden die
Attribute displayName, mail und ipPhone ausgewahlt. Die so gelieferten Daten wer-
den mit denen in derjenigen SQL-Tabelle verglichen, die durch die Variable $ad_table
definiert ist. Hier werden in einer Transaktion zunéchst alle Bestandsdaten geldscht, die
nicht mehr im Active Directoy vorhanden sind. Im letzten Arbeitsschritt werden noch

35

6 AD2AST 6.2 ad2ast_dial.pl

nicht vorhandene Benutzerinformationen in der Datenbank gespeichert.
Das Skript ad2ast_sync.pl ist als Cronjob gedacht und sollte einmal téglich ausgefiihrt
werden, z.B. um 1 Uhr nachts per folgendem Eintrag in der Crontab:

0 1 % *x x cd /srv/www/ad2ast/cgi-bin && ./ad2ast_sync.pl

6.2. ad2ast_dial.pl

Das CGI-Skript ad2ast_dial.pl ist die Schnittstelle zum Benutzer und somit die Kern-
komponente. Die Authentifizierung der Benutzer erfolgt iiber eine eigens erstellte Cli-
ent-/Serverschnittstelle, welche die in der voicemail.conf hinterlegten Mailboxnum-
mern als Usernamen und das jeweilige Mailboxkennwort als Passwort verwendet. Nach
dem erfolgreichen Login wird dem Anwender zunéchst eine Willkommensseite prasentiert.
Von hier hat er die folgenden Mdoglichkeiten:

e cinen in der Datenbank hinterlegten Kontakt anzurufen

e eine weitere Telefonnummer, die nicht im Active Directory gepflegt wird, unter der
er aber zu erreichen ist, hinzuzufiigen oder zu l6schen

e Teilnehmer anhand von Telefonnummer, Emailadresse oder Name zu suchen
e sich abzumelden.

Als CGI-Skript bekommt ad2ast_dial.pl den Namen der Methode, mit der es aufgeru-
fen wurde, in der Umgebungsvariablen REQUEST _METHOD iibergeben. Unterstiitzt werden
die Methoden POST, bei der alle dem Skript iibergebenen Daten von der Standardeinga-
be gelesen werden miissen, und GET, bei dem diese Daten als Teil der aufgerufenen URL
in der Umgebungsvariablen QUERY_STRING gespeichert sind. Die per POST oder GET
gelieferten Werte liegen in der Form keyl=valuel&key2=value2&. . .&keyN=valueN vor.
Sonder- und Metazeichen wie z.B. das Gleichheitszeichen oder Umlaute werden als he-
xadezimale Zahl ihres ASCII-Wertes mit vorangestelltem Prozentzeichen dargestellt.
So wiirde der Name Bdrbel als name=B,C3/,A4rbel {ibergeben werden. Die Aufteilung
der Schliissel-/Wertepaare iibernimmt die Funktion http_vars(). Sie teilt zunéchst die
iibergebene Zeichenkette bei jedem Vorkommen eines kaufménnischen Und-Zeichens
auf. Die so gewonnenen Teilstrings stellen in Perl ein Array dar, dessen Elemente mit
dem Operator foreach durchwandert werden kénnen. Jedes dieser Elemente wird nun
an Gleichheitszeichen geteilt, so dass jeder n-te Schliissel und jeder n-te Wert in den
Variablen $key und $value vorliegen. Nach dem Ersetzen von Meta- und Sonderzei-
chen mittels reguldrer Ausdriicke wird der Schliissel als Index und der Wert als Da-
tenfeld in einem Hash, einem assoziierten Array, verwendet. Somit liegen die dem CGI-
Skript iibergebenen Werte nun in der Perl-Variablen %http_post vor. Die vom Anwender
gewiinschte Aktion wird generell im Datenfeld $http_post{action} iibergeben. Folgen-
de Aktionen werden verarbeitet:

login Der Anwender hat Username und Passwort in die entsprechenden Formularfel-
der eingetragen und mochte sich einloggen. Diese Authentifizierungswerte erhilt
das Skript in den Variablen $http_post{username} bzw. $http_post{password}.
Sie werden anschliessend verwendet, um sich gegen die in der voicemail.conf
hinterlegten Daten zu authentifizieren. Stimmen Username und Passwort iiberein,
wird dem Webbrowser ein sogenanntes Cookie geliefert, welches bei jedem weiteren
Seitenaufruf sicherstellt, dass der Anwender sich zuvor korrekt angemeldet hat

36

6 AD2AST 6.2 ad2ast_dial.pl

= EE i E i E . _ ; . - _ ﬁ E =]
Fle Edt View History Bookmarks Tools Help

Eingeloggt als: Grandstrearmn 1 (2001) Teilnehmerliste

Teilnehrnerliste Name Email Telefon Aktion
. Grandstream 1 2001
Teilnehmer suchen
H-Lite Mac 2003 Anrufen
Meine Rufnummern
Abmelden
Done

Abbildung 21: Die Teilnehmerliste in der Weboberfliche von AD2Ast

r = = = = hl
Fle Edit VWiew History Bookmarks Tools Help

Eingeloggt als: Grandstream 1 (2001) Teilnehmer sSuc hen

Teilnehmerliste

MName: I*
Teilnehmer suchen Email: I*
Telefon: I*

Meine Rufnurnrmern

Abmelden Suichen |

Done

Abbildung 22: Maske zur Benutzersuche

diallist Dem Benutzer werden alle in der MySQL-Datenbank hinterlegten Teilnehmer
samt Telefonnummern und Emailadresse dargestellt (s. Abbildung 21). Er hat hier
die Moglichkeiten, die Liste nach Name, Telefon oder Email zu sortieren, oder per
Klick auf den mit Anrufen bezeichneten Link die entsprechende Person anzurufen.
Die eigentliche Darstellung in HTML-Code iibernimmt die Funktion diallist (),
welche auch bei der Ergebnispriisentation einer Suche (s.u.) zum Einsatz kommt

search Dem Anwender wird die Eingabemaske fiir die Suche im Datenbestand angezeigt
(Abbildung 22). Er hat die Moglichkeit, nach Name, Email und Telefonnummer zu
suchen, wobei diese 3 Suchparameter logisch UND-verkniipft sind. Als Wildcard
steht das allgemein verwendete Sternchen (*) zur Verfiigung

dosearch Mit dieser Aktion wird die eigentliche Suche im Datenbestand durchgefiihrt.
Da kein normalisiertes Datenbankmodell realisiert wurde (dies ist beim Datenim-
port aus einem LDAP-Verzeichnis wie einem AD auch nur mit grossem Aufwand
moglich), wird die Suche in Perl mittels regulidrer Ausdriicke durchgefiihrt. Zu-
vor miissen jedoch die 3 Suchparameter in giiltige regulére Ausdriicke iiberfiihrt
werden. So muss z.B. der vom Anwender eingegebene Suchstring *anxiiller* in
den dquivalenten reguldren Ausdruck =*an.*iiller.*$ iiberfiihrt werden. Dieser
wiirde dann auf Namen wie Hans Miiller, Johann Schniiller, Janine Filler usw.
zutreffen. Treffen alle drei Suchparameter (Name, Telefon, Email) zu, und sei es

37

6 AD2AST 6.2 ad2ast_dial.pl

nur, weil der Anwender iiberall das Sternchen verwendet hat, so werden die Ergeb-
nisse wiederum der Funktion diallist() iibergeben, welche die Darstellung per
HTML vornimmt

dial Diese Aktion wird aufgerufen, wenn der Anwender aus der Kontaktliste oder aus
einem Suchergebnis heraus auf Anrufen geklickt hat. Hier wird jedoch nur ein Hin-
weistext (,,Ihr Telefon klingelt nun.“) présentiert und der Webbrowser automatisch
per Redirect dazu aufgefordert, die gleiche Seite, aber mit dem Aktionsparamter
dodial aufzurufen

dodial Dies ist das Kernstiick der gesamten Weboberfliche, da diese Aktion den An-
wender mit dem von ihm gewiinschten Teilnehmer verbindet. Nach einigen Plau-
sibilitdtstests, mit denen unterbunden wird, dass ein nicht in der Datenbank hin-
terlegter Kontakt angerufen wird und dass sich der Anwender nicht selbst anrufen
will (obgleich dies nur duch Manipulation in der URL moglich ist), wird zunéchst
der Dialplan iiber das Asterisk Manager Interface befragt, wie das Telefon des ak-
tuell angemeldeten Anwenders zu erreichen ist. Hierzu wird der AMI-Befehl show
dialplan mit der entsprechenden Nummer abgesetzt. Geliefert werden all diejeni-
gen Eintrage der extensions.conf, die als Durchwahl eben die gefragte Nummer
aufweisen. Diese Eintrdge werden nun per reguldrem Ausdruck nach einem Aufruf
der Dialplanfunktion Dial () durchsucht, die ja in diesem Falle den der gesuchten
Durchwahl zugeordneten Kanal als Parameter aufweisen muss. Ist dieser gefun-
den, kann iiber das Asterisk Manager Interface das Kommando Originate mit
Quellkanal und Zielnummer abgesetzt werden. Jedoch blockiert dieses Kommando
solange, bis der Anwender den Horer seines Telefons (welches iiber den Quellka-
nal angesprochen wird) abgenommen hat. Erst danach wird der Programmfluss
fortgesetzt und per HTML der Hinweistext ausgegeben, dass nun das Telefon des
gewiinschten Gegeniibers klingelt

extra Hier wird dem Anwender eine Ubersicht seiner zusitzlich eingetragenen Telefon-
nummern dargestellt. Er hat wie in Abbildung 23 dargestellt die Moglichkeit, ent-
weder eine davon zu loschen oder eine neue einzutragen

extra-add Diese Aktion wird aufgerufen, wenn der Anwender eine neue Telefonnummer
hinzufiigen mochte. Er erhilt lediglich die Information, dass die Nummer in die
Datenbank eingetragen wurde und einen Link, der ihn zur Ubersicht iiber seine
Telefonnummern zuriickleitet

extra-delete Analog zu extra-add 16scht diese Aktion eine Telefonnummer aus der Da-
tenbank

logout Der Anwender moéchte sich abmelden. Hierzu wird das Cookie mit leerem Inhalt
iiberschrieben.

Enthélt die Variable $http_post{action} keine der aufgefithrten Werte oder wurde sie

gar nicht iibergeben, so wird dem Anwender die Loginmaske présentiert, die zur Eingabe

von Benutzernamen und Kennwort auffordert.

Da der Asteriskserver und der Web-/Datenbankserver nicht auf der selben Maschine lau-

fen, musste sichergestellt werden, dass sich die Anwender gegen die in der voicemail . conf
hinterlegten Anmeldedaten authentifizieren konnen. Hierzu lauft auf dem Asteriskrech-

ner der Dienst ad2ast_auth.pl (s. Kapitel 6.3). Er akzeptiert Verbindungen per TCP auf
Port 6666. Der Authentifizierungsvorgang basiert auf einem Challenge-/Responsever-

fahren, bei dem das Passwort niemals im Klartext tiber das Netzwerk verschickt wird.

38

6 AD2AST 6.2 ad2ast_dial.pl

AD2AST Dider - Meine Ruummern - Bon Echo Y

Ele Edit View History Bookmarks Tools Help

Eingeloggt als: Grandstream 1 (2001) Meine Rufnummern

Teilnehmerliste Telefon Motiz Alktion
. 666 Zweittelefon Loschen
Teilnehmer suchen
Eintragen

Meine Rufnummern

Abmelden

Daone

Abbildung 23: Maske zum Bearbeiten eigener Rufnummern

Die Funktion check_credentials() kapselt alle notwendigen Schritte. Nach Aufbau der
Verbindung liefert der auf dem Asteriskserver laufende Dienst ad2ast_auth.pl zunichst
einen zufilligen Einmalwert, eine sogenannte Nonce. Diese wird als Zeichenkette zusam-
men mit dem Usernamen und dem Passwort der Einweghashfunktion md5 () iibergeben.
Dieser Hashwert sowie der Username werden dem Dienst iibermittelt, der seinerseits die
Hashfunktion in gleicher Art und Weise aufruft. Stimmen der von ihm ermittelte und der
vom CGI-Skript gelieferte Hash iiberein, wird dem Login des Anwenders zugestimmt.
Die Kommunikation mit dem Asterisk Manager Interface erfolgt ebenfalls iiber eine
TCP-Verbindung auf Port 5038. Es handelt sich dabei um eine einfache Klartextkom-
munikation. Jede Anweisung beginnt mit dem Schliisselwort Action, gefolgt von einem
Doppelpunkt samt Leerzeichen und dem eigentlichen Befehl. In den folgenden Anwei-
sungszeilen konnen weitere Parameter folgen, ebenfalls in der Syntax Key: Value. Das
Ende einer Anweisung wird durch eine Leerzeile markiert. Antworten vom AMI-Server
erfolgen in der gleichen Syntax, sprich ebenfalls durch derartige Schliissel-/Wertepaare.
Lediglich bei mehrzeiligen Riickgabewerten wie z.B. einem Auszug aus dem Dialplan
stellt die erste Leerzeile nicht das Ende der Antwort dar, sondern trennt den Statusteil
von den eigentlichen Daten. Erst der String -—END COMMAND-- weist auf das Ende aller
gelieferten Daten hin. Um sich am Asterisk Manager Interface anzumelden, setzt der
Client folgende Answeisungen ab:

Action: Login
Username: amiuser
Secret: geheim
Events: off

Die Option Events: off weist den AMI-Server an, keine Ereignisse wie z.B. das Zu-
standekommen einer Verbidnung zwischen zwei Telefonen an den Client zu senden. Der
Dialplan oder der fiir eine gewiinschte Durchwahl zustédndige Teil des Dialplans wird
mittels der nachfolgenden Befehle abgefragt:

Action: Command
Command: show dialplan <Durchwahl>@default

Mochte man den gesamten Dialplan erhalten, so ist die Durchwahl samt Kontext weg-
zulassen. Der zentrale Befehl, um den sich diese Anwendung dreht, lautet Originate.
Er verbindet einen Kanal, sprich das Telefon, welches iiber ihn erreicht wird, mit einer
Durchwahl:

Action: Originate

39

6 AD2AST 6.3 ad2Zast_auth.pl

Channel: SIP/teilnehmerl
Exten: 4711

CallerID: 2001 <teilnehmeril>
Context: default

Priority: 1

Somit wiirde das SIP-Gerdt teilnehmer1 mit der Durchwahl 4711 verbunden werden.
Der angerufene Teilnehmer sdhe dann als CLIP-Information auf seinem Telefon, dass
eben teilnehmerl mit der Rufnummer 2001 anruft.

6.3. ad2ast_auth.pl

Das Skript ad2ast_auth.pl stellt die Authentifizierung der Benutzer im Webfrontend
sicher. Es lauft unter der Obhut eines Serviceddmons wie inetd, zinetd oder tcpser-
ver. Diese miissen so konfiguriert sein, dass bei einer Verbindungsanfrage auf Port
6666/ TCP das Skript gestartet wird. Dieses kann dann mit einem Client kommuni-
zieren, indem es auf die Standardausgabe schreibt bzw. von der Standardeingabe liest.
Somit konnte die Programmierung einer eigenen Serverkomponente in ad2ast_auth.pl
vermieden werden. Um der geforderten, als hinreichend sicher bewerteten Authentifizie-
rung per Challenge-/Responseverfahren mittels MD5-Verschliisselung nachzukommen,
liest das Skript zunéchst aus der Devicedatei des Systemzufallgenerators /dev/urandom
60 Bytes ein. Da es sich dabei um binédrte Werte handelt, werden sie in eine Base64-
encodierte Nonce umgewandelt, die nur noch Buchstaben, Ziffern, das Pluszeichen oder
den Schragstrich enthélt. Diese Zeichenkette wird an den Client geschickt, welcher dar-
aufhin mit dem Benutzernamen und der per md5() verschliisselten Zeichenkette aus
Benutzernamen, Passwort und Nonce antwortet. In der Datei
/etc/asterisk/voicemail.conf wird nun nach diesem Benutzer, sprich dieser Durch-
wahl bzw. Voicemailboxnummer geparst. Mit dem dort hinterlegten Passwort wird eben-
falls die gleiche MD5-Verschliissung unter Verwendung der Nonce durchgefiihrt. Stimmt
das Ergebnis mit dem vom Client gelieferten Wert iiberein, wird diesem per Ausga-
be von ok signalisiert, dass sich der Anwender korrekt authentifiziert hat. Andernfalls
und generell bei Fehlern antwortet ad2ast_auth.pl mit einem knappen no, was dem
Webfrontend anzeigt, den Anwender nicht hereinzulassen.

6.4. ad2ast_xml.pl

Die IP-Telefone GXP 2000 von Grandstream konnen ihr Adressbuch als XML-Datei von
einem Webserver laden. Das erwartete Format ist relativ einfach:

<?xml version="1.0"7>
<AddressBook>
<Contact>
<LastName>...</LastName>
<FirstName>...</FirstName>
<Phone>
<phonenumber>. . .</phonenumber>
<accountindex>0</accountindex>
</Phone>
</Contact>

</AddressBook>

40

6 AD2AST 6.4 ad2ast_xml.pl

Nach der obligatorischen XML-Deklarierung wird der Root-Container AddressBook er-
wartet. Dieser kann mehrere Elemente vom Typ Contact enthalten. Ein Kontakt besteht
schliesslich aus einem Vor- und einem Nachnamen sowie einem weiteren Container, der
die eigentliche Telefonnummer enthélt. Das Skript ad2ast_xml.pl erzeugt diese XML-
Datei auf Abruf und liefert sie direkt an den Client, sprich das Telefon aus. Dabei werden
alle Telefonnummern aus der MySQL-Datenbank exportiert.

41

7 INTEGRATION IN DAS LABORNETZ

7. Integration in das Labornetz

Der Asteriskserver soll zukiinftig im Laboralltag im Rahmen von Praktika zu Vorlesun-
gen und im CCNA-Kurs eingesetzt werden. Hierzu wurde aus zwei dlteren Computern
eine hinreichend leistungsfahige Maschine mit 512 MB Hauptspeicher, einer 15 GB gros-
sen Festplatte, einem DVD-ROM und einer Pentium 3 CPU mit 450 MHz geschaffen.
Zusétzlich erhielt dieser Rechner die ISDN-Karte. Als Betriebssystem wurde abweichend
zu den vorangegangenen Tests openSuSE Linux 10.2 installiert, wobei im Hinblick auf
den reinen Servereinsatz auf eine grafische Oberfliche wie KDE oder Gnome verzich-
tet wurde. Die Bedienung erfolgt daher ausschliesslich iiber die Textkonsole. In dieser
Konfiguration sollte der Rechner 5 gleichzeitige Telefonate ohne Verzégerungen oder Pa-
ketverlust verarbeiten konnen (vgl. ()). Die Festplatte bekam eine
individuelle Partitionierung: 1024 MB zu Beginn der Festplatte als Swapspeicher, der
Rest von rund 14 GB als Root-Verzeichnis mit dem Dateisystem ext? und der Option
data=journal. Folgende Pakete kamen zum Einsatz:

e openSuSE-Basissystem

e Konsolenwerkzeuge

e YaST-Systemverwaltung

e Grundlegende Entwicklung

e C/C++-Entwicklung

e Linux-Kernel-Entwicklung

e Voice over IP-Server (Asterisk)
o Asterisk-PgSQL

e PostgreSQL-Server

e Perl DBD MySQL

o Festival

Der Rechner erhielt den Hostnamen 1nx-servp in der Domain infma-labor.local. Als
interne IP-Adresse wurde die 192.168.1.4 vergeben. Fiir eine Gruppe von Diplomanden
sollte der direkte Zugriff von aussen mdoglich sein. Die offentliche Adresse fiir das zweite,
externe Interface wird zu einem spéteren Zeitpunkt erfolgen. Da diese neuste Version von
SuSE Linux ein komplettes Asterisk-Paket samt Zaptel-Treiber und PostgreSQL-Modul
mitbringt, konnte darauf verzichtet werden, den Telefonieserver selbst zu iibersetzen.
Ebenso wurde der PostgreSQL-Server als Bindrpaket von der SuSE-DVD installiert.
Dennoch musste die Datei /var/1ib/pgsql/data/pg_hba.conf wie in Kapitel 3.2.2 be-
schrieben angepasst werden. Um die CDR-Tabelle anlegen zu kénnen, wurde die Datei
postgres_cdr.sql vom vormals genutzen Entwicklungssystem auf den neuen kopiert.
Als einziges Programm bedurfte lediglich mpgl123 einer Installation aus dem Sourceco-
de. Ferner wurde das deutsche Sprachset fiir Asterisk manuell in das System kopiert.
Die Installation des Kernelmoduls fiir die ISDN-Karte war im Gegensatz zu SuSE Linux
10.0 nicht ohne weiteres moglich. openSuSE verzichtet konsequent auf die Auslieferung
von Programmen, die nicht komplett als Sourcecode unter einer zur GPL gleichwertigen
Lizenz vorliegen. Daher musste das Kernelmodul fiir die AVM-Karte von der Websei-
te http://opensuse.fltronic.de/SUSE10_2.htm heruntergeladen werden und manuell
per folgendem Befehl installiert werden:

42

http://opensuse.fltronic.de/SUSE10_2.htm

7 INTEGRATION IN DAS LABORNETZ

rpm -i fcpci-kmp-default-0.1_2.6.18.2_34-0.1i586.rpm

Damit das Kernelmodul ztdummy aus dem Zaptel-Paket automatisch beim Systemstart
geladen wird, war die Datei /etc/sysconfig/zaptel mit folgender Zeile zu ergénzen:

ZAPTEL_MODULES="ztdummy"

Vorerst nicht benotigte Dienste innerhalb des Asteriskservers wurden aus Sicherheits-
griinden deaktiviert. Dies geschah mit besonderem Hinblick auf die direkte, d.h. nicht
durch eine Firewall geschiitzte Anbindung des Rechners an das Internet. Hierzu wurden
die Unterstiitzung fiir DUNDIi sowie fiir das von der Firma Cisco entwickelte Protokoll
Skinny durch folgende Eintrége in der /etc/asterisk/modules.conf unterbunden:

noload => chan_mgcp.so
noload => chan_skinny.so
noload => pbx_dundi.so

Da im Labornetz schon ein Webserver samt MySQL-Datenbank existiert, wurden dort
alle Skripte aus der Anwendung AD2Ast ausser ad2ast_auth.pl installiert. Dieses Skript
musste auf dem Asteriskserver verbleiben, da es die lokale Datei
/etc/asterisk/voicemail.conf ausliest. Ferner mussten auf dem Webserver die Perl-
Module Net : :DNS und Net: : LDAP nachinstalliert werden. Der Apache2-Webserverdienst
wurde um einen eigenen Virtual Host erweitert, der nun unter der IP-Adresse
192.168.1.18 ansprechbar ist. Das laborinterne Active Directory wurde um die Gruppe
Dom&nen-Asterisk erweitert, die bei den Benutzern Lutz Griinwoldt und Felix Ogris
als zusétzliche Gruppe eingetragen wurde. Diesen Benutzern wurde zudem jeweils eine
IP-Telefonnummer zugewiesen.

43

8 AUSBLICK

8. Ausblick
8.1. Todo

In dieser Studienarbeit konnten (leider) nicht alle Aspekte zu Voice over IP und Asterisk
betrachtet werden. Die nachfolgend aufgefithrten Themen und Ideen kénnten daher fiir
spétere Arbeiten als Grundlage dienen.

8.1.1. ENUM & DUND:i

ENUM und DUNDI dienen zum automatischen Auffinden von Telefonieteilnehmern. Die-
ses ergibt sich unter anderem aus der Problematik, dass jeder Internetnutzer seine eigene
kleine Vermittlungsstelle in Form eines Asteriskservers betreiben kann. Wahrend ENUM
als weitestgehend standarisiertes Verfahren das Domain Name System nutzt, stammt
DUNDI aus der Feder von Mark Spencer und bedarf vor dem Einsatz einer manuellen
Vermaschung der einzelnen Asteriskserver. Neben einer Beschreibung der reinen Funkti-
onsweise und der Konfiguration in Asterisk sollten hierbei vor allem Sicherheitsaspekte
und eventuelle Routingprobleme o.4. erldutert werden.

8.1.2. AGI Skripte

Das Asterisk Gateway Interface (s. Kapitel 3.3.11) erméglicht es, eigene Programme aus
dem Dialplan heraus aufzurufen und somit dynamische und benutzergesteuerte Funk-
tionen zu realisieren. Neben der Schnittstellenbeschreibung wéren hierbei vor allem in-
teressante Ideen gefragt, die sich realisieren lassen.

8.1.3. Protokolluntersuchung

SIP/RTP und IAX wurden im Rahmen dieser Studienarbeit nur als Blackbox ange-
sehen. Wie sie implementiert sind, wie ihr Verhalten in Weitverkehrsnetzen in Bezug
auf Latenz und Giite sind und welche etwaigen Designfehler bei diesen Protokollen zu
Sicherheitsproblemen fithren konnten, stellt ein weiteres, spannendes Thema dar.

8.1.4. Asterisk-Module

Alle Funktionen, Protokolle und Codecs sind als Module in Form von shared objects
(Dateiendung *.so) realisiert. Asterisk kann somit nahezu beliebig erweitert werden.
Neben der notwendigen Interfacebeschreibung wéren hier Prototypen und idealerweise
ausprogrammierte, noch dringend benttigte Module erforderlich.

8.2. Version 1.4

Wihrend der Niederschrift dieser Studienarbeit erschien Asterisk in der Version 1.4. Die
neuen oder verbesserten Funktionen konnten jedoch nicht mehr mit einflielen. Fiir eine
detaillierte Aufzihlung aller Anderungen zur Vorgéngerversion ist die Datei CHANGES aus
dem Quellpaket von Asterisk 1.4 heranzuziehen. Besonders hervorzuheben sind folgende
Neuerungen:

o AEL, die Asterisk Fatension Language, wird nicht mehr als experimentell betrach-
tet und steht somit offiziell als Ersatz fiir die herkdmmliche Syntax der
extension.conf zur Verfiigung

e IMAP-Server (Internet Mail Access Protocol) konnen zur Speicherung von Voice-
mailnachrichten verwendet werden

44

8 AUSBLICK 8.2 Version 1.4

e Zustandsabfragen des Asteriskservers per Simple Network Management Protocol
(SNMP) sind nativ moglich

e Das Asterisk Manager Interface ist nun {iber einen integrierten HTTP-Server an-
sprechbar.

45

A. Literatur

A. Literatur

[Blank u. Dieterle 2004] BLANK, Petra ; DIETERLE, Stefan: ENUM-Domains bei
der DENIC eG. Version: March 2004. http://www.denic.de/media/pdf/enum/
veranstaltungen/pre-reader 20040316.pdf, Abruf: 2006-11-05

[Diverse a] DIVERSE: InterAsterisk eXchange. http://de.wikipedia.org/wiki/
InterAsterisk eXchange, Abruf: 2007-01-12

[Diverse b] DIVERSE: Session Initiation Protocol. http://de.wikipedia.org/wiki/
Session_Initiation Protocol, Abruf: 2007-01-17

[Diverse c] DIVERSE: SNOM. http://de.wikipedia.org/wiki/SNOM, Abruf: 2007-01-
21

[Diverse d] DIVERSE: Telephone Number Mapping. http://de.wikipedia.org/wiki/
ENUM, Abruf: 2007-01-17

[Diverse e] DIVERSE: wvoip-info.org. http://http://www.voip-info.org/, Abruf: 2007-
01-21. — Anmerkung des Autors: das Voice over IP-Wiki

[Gurow 2005] Gurow, Lars: Snom bringt kostenloses VoIP-
Softphone. Version: March ~ 2005. http://wuw.netzwelt.de/news/
70233-snom-bringt-kostenloses-voipsoftphone.html, Abruf: 2007-01-17

[Meggelen u. a. 2005] MEGGELEN, Jim V. ; SMITH, Jared ; MADSEN, Leif: Asterisk - The
Future of Telephony. Version: September 2005. http://www.nufone.net/downloads/
asteriskdocs/AsteriskTFOT.zip, Abruf: 2007-01-12. ISBN 0-596-00962—-3

[Schildt 2004] ScHILDT, Holger: VoIP mit IAX. Version: April 2004. http://archiv.
tu-chemnitz.de/pub/2004/0051/, Abruf: 2007-01-12

46

http://www.denic.de/media/pdf/enum/veranstaltungen/pre-reader_20040316.pdf
http://www.denic.de/media/pdf/enum/veranstaltungen/pre-reader_20040316.pdf
http://de.wikipedia.org/wiki/InterAsterisk_eXchange
http://de.wikipedia.org/wiki/InterAsterisk_eXchange
http://de.wikipedia.org/wiki/Session_Initiation_Protocol
http://de.wikipedia.org/wiki/Session_Initiation_Protocol
http://de.wikipedia.org/wiki/SNOM
http://de.wikipedia.org/wiki/ENUM
http://de.wikipedia.org/wiki/ENUM
http://http://www.voip-info.org/
http://www.netzwelt.de/news/70233-snom-bringt-kostenloses-voipsoftphone.html
http://www.netzwelt.de/news/70233-snom-bringt-kostenloses-voipsoftphone.html
http://www.nufone.net/downloads/asteriskdocs/AsteriskTFOT.zip
http://www.nufone.net/downloads/asteriskdocs/AsteriskTFOT.zip
http://archiv.tu-chemnitz.de/pub/2004/0051/
http://archiv.tu-chemnitz.de/pub/2004/0051/

B SOFTWARE

B. Software

B.1. Asteriskserver

SuSE Linux 10.0 ftp://ftp-stud.fht-esslingen.de/Mirrors/ftp.suse.com/pub/suse/
i386/10.0/iso/

Asterisk 1.2.13 http://www.asterisk.org/

Zaptel 1.2.11 http://www.asterisk.org/

Deutsches Sprachset fiir Asterisk Version 2.0 http://www.stadt-pforzheim.de/asterisk/
PostgreSQL 8.1.5 http://www.postgresql.org

gastman 1.0-RC1 http://ftp.digium.com/pub/gastman/

Flash Operator Panel 0.26 http://www.asternic.org/

mpgl23 0.61 http://wuw.mpgl23.de/

FRITZ!Card Kernelmodul fiir openSuSE 10.2 http://opensuse.fltronic.de/SUSE10_
2.htm

B.2. Softphones
X-Lite for Windows 3.0 / X-Lite for Mac OS X 2.0 http://www.counterpath.com

Snom 360 Softphone 5.3 http://www.snom.de
3CX Phone http://www.3cx.com/VOIP/voip-phone.html

Idefisk for Windows 1.37Idefisk for Mac OS X 1.35 http://www.asteriskguru.com/
idefisk/

JackenlAX 1.0beta http://www.jackenhack.com/jackeniax/
Kiax 0.8.5 http://www.kiax.org/
Wengo 2.0 http://www.openwengo.org

Sipps 2.1.6 http://www.nero.com/sippstar/deu/SIPPS Light.html

47

ftp://ftp-stud.fht-esslingen.de/Mirrors/ftp.suse.com/pub/suse/i386/10.0/iso/
ftp://ftp-stud.fht-esslingen.de/Mirrors/ftp.suse.com/pub/suse/i386/10.0/iso/
http://www.asterisk.org/
http://www.asterisk.org/
http://www.stadt-pforzheim.de/asterisk/
http://www.postgresql.org
http://ftp.digium.com/pub/gastman/
http://www.asternic.org/
http://www.mpg123.de/
http://opensuse.fltronic.de/SUSE10_2.htm
http://opensuse.fltronic.de/SUSE10_2.htm
http://www.counterpath.com
http://www.snom.de
http://www.3cx.com/VOIP/voip-phone.html
http://www.asteriskguru.com/idefisk/
http://www.asteriskguru.com/idefisk/
http://www.jackenhack.com/jackeniax/
http://www.kiax.org/
http://www.openwengo.org
http://www.nero.com/sippstar/deu/SIPPS_Light.html

© 00~ Ui WN -

o e e e e e ol
© 00U WNH+O

20

C POSTGRESQL STARTSKRIPT

C. PostgreSQL Startskript

#!/bin/sh

chkconfig: 2345

cd / || exit 1

case "$1”7 in
start)

sudo —u pgsql

)

3

stop)
sudo —u pgsql

*)

esac

)

3

90 10

/usr/local/pgsql/bin/pg-ctl start —w \
—D /usr/local/pgsql/data —1 /var/tmp/pg-ctl.log

/usr/local /pgsql/bin/pg_ctl stop \
—D /usr/local/pgsql/data

echo 7usage:_30_<start|stop>”

exit 1

)

)

48

D ASTERISK STARTSKRIPT

D. Asterisk Startskript

1 #!/bin/sh

2

3 # chkconfig: 2345 90 10

4

5 cd / || exit 1

6

7 case 7$1” in

8 start)

9 /usr/sbin/asterisk

10 S

11 stop)

12 /usr/sbin/asterisk —r —x ”stop.gracefully”
13 S

14 *)

15 echo "usage:._$0_<start |stop>”
16 exit 1

17 35

18 esac

49

0~ Uk WN -

E AD2AST

E. AD2Ast
E.1. ad2ast_auth.pl

#!/usr/bin/perl

Fehlerausgabe schliessen
close(stderr);

Module einbinden
use MIME:: Base64;
use Digest::MD5 (md5);

Deskriptoren auf Auto—Flush
$| = 1;

zufaellige Bytes einlesen

open(FH, 7 /dev/urandom”) or &no();
&no() unless (read(FH, $nonce, 60) = 60);
close (FH);

Nonce an den Client senden
print encode_base64 ($nonce, ””7) . "\r\n”;

Benutzernamen und Hash vom Client lesen
$user = <>;

$imposed_hash = <>;

close(stdin);

Newline strippen und dekodieren
foreach ($user, $imposed_hash) {
&no() unless s/\r\n$//o;
$_. = decode_base64($.);
}

voicemail.conf einlesen

open(FH, 7 /etc/asterisk/voicemail.conf”) or &mo();
@config = map { s/\r|\n//sgio; $_. } <FH>;

close (FH);

wvoicemail.conf parsen
foreach (@config) {
it (/NN H)NIS/) |
Kontext Deklaration
if (31 eq 7default”) { $in_context = 1; }
else { $in_context = 0; }
next;
}
Voicemail—Kontext gefunden?
next unless $in_context;
gueltigen FEintrag gefunden?
next unless /" (\d-+)\ss\=\>\s+(["\,]+),/;
Benutzernummer gefunden ?
next unless (31 eq Suser);
Hashsummen vergleichen
&yes () if ($imposed_hash eq md5($user, $2, $nonce));
last ;

}

default=verbieten & FEnde
&mo () ;

lokale Subroutinen

sub no () { print "no\r\n”; exit 1; }
sub yes () { print 7ok\r\n”; exit 0; }

50

0O Utk WN

E AD2AST E.2 ad2ast_dial.pl

E.2. ad2ast_dial.pl

#!/usr/bin/perl

Module einbinden
use MIME:: Base64;

use IO :: Socket;

use DBI;

use Digest::MD5 (md5);

Subroutinen und Konfiguration einlesen
require ”ad2ast_subs.pl”;

Deskriptoren auf Auto—Flush
$] = 1;

CGIParameter einlesen
if ($ENV{REQUESTMETHOD} =~ /"post$/i) {
read (STDIN, $post_string , $SENV{CONTENTLENGTH});

else {
$post_string = SENV{QUERY.STRING};
}

CGFParameter in einen Perl—Hash wandeln
&http_vars($post_string , \%http_post);

Username + Passwort bestimmen ...

if ($http_-post{action} eq "login”) {
...beim Login aus den FEingabefeldern
$user = $http_post{username };
$pass = $http_post{password };

elsif ($http_post{action}) {
...sonst aus dem Cookie
($user, $pass) = split(/:/, decode_base64(
(split(/=/, SENV{HTTP.COOKIE}, 2))[1]));
}

Username + Passwort testemn , falls nicht die Startseite aufgerufen wurde
$err = &check_credentials ($user, $pass) if $http_post{action};
$http_post{action} = 7”7 if S$err;

Verbindung zum Asterisk Manager und zur Datenbank aufbauen und

... Telefonnummern aus der DB laden, falls nicht die Startseite oder

...die Logoutseite gewaehlt wurden

if ((Shttp_post{action} ne 7”) && ($http_post{action} ne ”logout”)) {
$err = &manager_connect (\ $mgr_sock);

$err = &db_connect (\$dbh) unless S$err;
$err = &load_records(\%records , $dbh) unless Serr;
&fatal_error ($err) if Serr;

}

Aktionsauswertung

if ($http_post{action} eq ”"login”) {
Cookie setzen und Startseite anzeigen
&set_cookie (encode_base64 (” $user: $pass”?, 77));
&page_start (" Willkommen” , 1);
print "<p>Hallo ,_$records{$user}—>{name}.</p>\n";
&page_end (1);

elsif ($http_post{action} eq ”diallist”) {
alle Telefonnummern ausgeben
&diallist (\%records, ” Teilnehmerliste”, ”&action=diallist”);

elsif ($http_post{action} eq ”search”) {

Suchmaske
&page_start (” Teilnehmer_suchen”, 1);

o1

E AD2AST E.2 ad2ast_dial.pl

70 print "<form._method=\"POST\” >\n”

71 ?<input.type=\"hidden\” _.name=\"action\” .value=\"dosearch\”>\n"

72 ?<table ><tr><td>Name: </td>"

73 "<td><input_type=\"text\” _name=\"name\” _value=\"%\"></td></tr >\n”

74 P<tr><td>Email: </td>”

75 P<td><input_type=\"text\” cname=\"mail\” _value=\"%\"></td></tr >\n”

76 P<tr><td>Telefon:</td>”

7 ’<td><input_type=\"text\” _name=\"phone\” _value=\"*\"></td></tr >\n”
78 ?</table>
\n<input.type=\"submit\” _.value=\"Suchen\”>\n</form>\n" ;
79 &page_end (1);

80

81 elsif ($http_post{action} eq ”dosearch”) {
82 # Suche durchfuehren
83 %search_result = ();

84 $urlext = ”"&action=dosearch”;

85 foreach (phone, name, mail) {

86 $urlext .= 7&$_=$http_post{$_}";

87 # Suche per Regexp

88 $search{$_} = ”"” . $http_post{$_} . ”"\$”;

89 $search{$_} =" s/\x/\.*/sgio;

90

91 foreach $phone(sort keys %records) {

92 $found_phone = 0;

93 # alle Telefonnummern wvergleichen

94 foreach ($phone, keys %{$records{$phone}—>{extra_phones}}) {
95 next unless /$search{phone}/;

96 $found_phone = 1;

97 last ;

98

99 next unless $found_phone;

100 next unless ($records{$phone}—>{name} =" /$search{name}/);
101 next unless ($records{$phone}—>{mail} =" /$search{mail}/);
102 $search_result {$phone}—>{mail} = $records{$phone}—>{mail };
103 $search_result {$phone}—>{name} = $records{$phone}—>{name};
104 $search_result {$phone}—>{extra_phones} = $records{$phone}—>{extra_phones};
105

106 # Ergebnis der Suche ausgeben
107 &diallist (\%search_result , ”"Suchergebnis”, $urlext);

108

109 elsif ($http_post{action} eq ”dial”) {

110 # Anrufen: Hilfetext ausgeben und weiterleiten

111 &page_start (" Anrufen”, 1, ”"?action=dodial&exten=8$http_post{exten}”
112 "&dialexten=$http_post{dialexten}”);

113 print "<p>Ihr._Telefon.(Durchwahl_.$user)_klingelt .nun.
Sobald.Sie._das.”
114 ” Gesprach _angenommen_haben , _.wird_versucht ,.” .

115 $records{$http_post{exten}}—>{name} . ”.(Durchwahl.”

116 $http-post{dialexten} . ”)_anzurufen.</p>\n”;

117 &page_end (1);

118

119 elsif (Shttp_post{action} eq ”dodial”) {

120 # Missbrauch abfangen

121 &fatal_error (” Sie_diirfen_sich_nicht_selbst_anrufen.”)
122 if ($user eq $http_post{dialexten });

123 $found_-number = 0;

124 foreach (keys %records) {

125 $found_number = 1 if ($. eq $http_post{dialexten });

126 foreach (keys %{$records{$_}—>{extra_phones}}) {

127 $found_number = 1 if ($. eq $http_post{dialexten });

128 }

120}

130 &fatal_error (" Unbekannter_.Teilnehmer.”) unless $found_number;

131

132 # Anrufen: Waehlen (blockiert bis Anrufer abnimmt)

133 $err = &manager_action ($mgr_sock, \$result , ”Command” ,

134 Command => ”show._dialplan_$user\@$voicemail_context”);

135 &fatal_error (3err) if Serr;
136 $channel = 81 if (S$result =~ /Dial\((["\I\)]+)/);

137 &fatal_error ("Ihr_Telefon_wird.vom.Dialplan_nicht_erreicht!”) unless $channel;
138 $err = &manager_action ($mgr_sock, \8$result, ”Originate”,

139 Channel => $channel,

140 Exten => $http_post{dialexten},

52

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

E AD2AST E.2 ad2ast_dial.pl

Priority = 1,
Context => $voicemail_context ,
CallerID => ”$user_\<$records{S$user}—>{name}\>");
&page_start (" Anrufen” , 1);
if (Serr) {
keine Standardfehlerseite hier!
print "<p.class=\"error\”>Der_Anruf_konnte_nicht.platziert._.werden:</p>\n
"<pre_style=\"margin—left :10px\">$err\n$result </pre>\n”
"<p>Eventuell _haben_Sie_nicht_abgenommen..? _;—)</p>\n”;

”

else {
print "<p>Bleiben.Sie_am.Telefon ,_bis.” .
$records{$http_post{exten}}—>{name} . ”_(Durchwahl.”
$http_post{dialexten} . ”)._abgenommen.hat.</p>\n”;
}

print "<p><a._href=\"javascript:back()\” >Weiter</p>\n”;
&page_end (1);

elsif ($3http_post{action} eq "extra”) {
Meine (Extra—)Rufnummern anzeigen
&page_start (” Meine ; Rufnummern” , 1);
print "<form_method=\"POST\” >\n”
’<input.type=\"hidden\” .name=\"action\” .value=\"extra—add\” >\n”
?<table_class=\"tablel\”>\n<tr><th>Telefon </th>\n<th>Notiz </th>\n”
’<th>Aktion</th></tr>\n";
$color = 1;
foreach (sort keys %{$records{Suser}—>{extra_phones}}) {
print "<tr>\n<td.class=\"td$color\">$_</td>\n”
"<td_class=\"td$color\”>8$records{$user}—>{extra_phones}—>{$_}</td>\n".
"<td_.class=\"td$color\”><a_href=\"7action=extra—delete&phone=$_\">"
”Loéschen</td>\n</tr >\n” ;
$color = 3 — $color;
}
FEingabefelder fuer neue Rufnummer
print 7<tr>\n” .
’<td.class=\"td$color\”><input._type=\"text\” _name=\"phone\”></td>\n”
’<tdoclass=\"td$color\”><input.type=\"text\” _name=\"comment\”></td>\n"
"<td.class=\"td$color\”><input._type=\"submit\” -value=\"Eintragen\”>"
7 </td>\n</tr >\n</table >\n";
&page_end (1);

elsif ($http_-post{action} eq ”extra—add”) {

meue Rufnummer eintragen

$err = &db_prepare($dbh, \$sth, "INSERT.INTO.$user_table.”
” (phone , _extra_phone , _.comment).”
"VALUES. (7 ,.7,.7)7):

&fatal_error ($err) if Serr;

$err = &db_execute($sth, $user, $http_post{phone}, $http_post{comment});

&fatal_error ($err) if $err;

&db _finish ($sth);

&page_start (” Meine ; Rufnummern” ;, 1);

print "<p>Ihre._Telefonnummer_wurde_eingetragen.</p>\n”"

"<p><a_href=\"7action=extra\”>Zuriick_.zur_Ubersicht </p>\n";
&page_end (1);

elsif ($http_post{action} eq ”extra—delete”) {
Rufnummer loeschen
$err = &db_prepare ($dbh, \$sth, "DELETE_FROM.S$user_table.” .
"WHERE_phone=?_AND_extra_phone=7");

&fatal_error ($err) if Serr;

$err = &db_execute ($sth, Suser, $http_post{phone});

&fatal_error ($err) if Serr;

&db _finish ($sth);

&page_start (” Meine ; Rufnummern” , 1);

print "<p>Ilhre._Telefonnummer_wurde_.geldscht.</p>\n"
"<p><aohref=\"7action=extra\”>Zuriick.zur_Ubersicht </p>\n";

&page_end (1);

elsif (Shttp_-post{action} eq ”logout”) {

Cookie loeschen und Logoutseite anzeigen
&destroy_cookie ();

93

212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282

E AD2AST

E.2 ad2ast_dial.pl

&page_start (” Abmeldung”);
¢er_page_start (” Abmeldung”);

print "<p>Sie_haben._sich._vom.System_abgemeldet.</p>\n"
P<p><a_href=\"ad2ast_dial.pl\”>Hier_kénnen._Sie_sich_neu_anmelden.”

7 < /a></p>\n" ;
¢er_page_end ();
&page_end ();

else {
Default: Loginseite anzeigen,
&login_page (Serr);

}

Verbindungen abbauen

if (defined $dbh) {
&db _disconnect ($dbh);
&manager_disconnect ($mgr_sock);

}

Programmende
exit (0);

eventuell mit Fehlertext

lokale Subroutinen

Verbindung zum Asteriskmanager aufbauen

sub manager_connect ()

my $sock = shift;
my S$result = 77;

$3sock = new I0:: Socket ::INET(PeerAddr => $manager_host,
PeerPort => $manager_port ,
Proto => 7tcp”)
or return ” Asterisk._manager:.$!”;

my $msg = <$$sock >;

return &manager_action ($%sock, \S$result, ”Login”,
Username => $manager_user ,
Secret => $manager_pass,
Events => ” off”);

}

Verbindung zum Asteriskmanager beenden

sub manager_disconnect ()

{
my $sock = shift;
close ($sock);

}

Befehl zum Asteriskmanager absetzen

sub manager_action ()
{
my $sock = shift;
my 3$result = shift;
my $action = shift;
my %kvhash = @_;

Aktion + etwaige Schluessel—/Wertepaare senden
print $sock ”Action:_$action\r\n”;
while (my ($key, $value) = each %kvhash) {

print $sock ”$key:_$value\r\n”;

print $sock ”\r\n”;
my $status = 77
$$result = 77,

while (<$sock>

) {
$$result .= $_;

54

283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353

E AD2AST

E.2

ad2ast_dial.pl

}

if (/" (la—zA=Z]+): (["\s]+)/) {
Status in Form wvon "Key: Value”
my $key = $1;
my $value = $2;
if (Skey eq ”Response”) { $status = $value; }

}
elsif (/"\sx*$/) {

Leerzeile markiert Ende, sofern wir einen Status haben

next if !$status;
last unless ($status eq ”Follows”);

}
elsif (/"——END COMMAND-—/) {

laengere Ausgaben werden durch "——END COMMAND-—” beendet

last if ($status eq ”Follows”);

}
}

return
return ” Asterisk_manager: _$status”;

9

if (($status eq ”Success”) || ($status eq ”"Follows”));

zum eigenen Auth—Server wverbinden wund Username/Passwort verifizieren
sub check_credentials ()

{

}

my $user = shift;

my $pass = shift;

my $sock = new IO:: Socket ::INET(PeerAddr => $auth_host,
PeerPort => 6666,

Proto = "tcp”)
or return $!;
Nonce vom Server lesen
my $nonce = <$sock >;
$nonce =" s/\r\n$//o or return ”"Protokollfehler”;

$nonce = decode_base64 ($nonce);

gewuenschten User & salted Hash schreiben

print $sock encode_base64(S$user, ””) . ?\r\n”
encode_base64 (md5(3user, $pass, $nonce), 77)

my S$result = <$sock >;

close ($sock);

Ergebnis auswerten
$result =" s/\r\n$//o or return ”Protokollfehler”;
return 7”7 if ($result eq 7ok”);

return ”Falscher _.Benutzername_oder_Passwort” if (S$result eq

return ” Protokollfehler”;

alle Telefonnummer aus der Datenbank laden
sub load_records ()

{

my $records = shift;
my $dbh = shift;
my $sth;

Telefonnummern aus dem AD

$err = &db_prepare($dbh, \$sth, "SELECT.x_FROM_$ad_table”);

return $err if S$err;

$err = &db_execute ($sth);

return $err if $err;

while (my $row = $sth—>fetchrow_hashref()) {
$records —>{$row—>{phone}}—>{name} = $row—>{name};
$records —>{$row—>{phone}}—>{mail} = $row—>{mail };

}
&db _finish ($sth);

von den Benutzern gefihrte Telefonlisten

77\r\n71 ;

”»

$err = &db_prepare($dbh, \$sth, ”?SELECT_x_FROM_S$user_table”);

return $err if Serr;
$err = &db_execute ($sth);
return $err if Serr;

95

no”);

354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424

E AD2AST E.2 ad2ast_dial.pl

}

while (my $row = $sth—>fetchrow_hashref()) {
$records —>{$row—>{phone}}—>{extra_phones}—>{$row—>{extra_phone}} =
$row—>{comment };

}
&db _finish ($sth);
return 77

dem CGI-Skript uebergebene Variablen in einen Perlhash schreiben
sub http_vars ()

{

}

my $vars_string = shift;
my $ret_ref = shift;

foreach (split(/\&/, $vars_string)) {
my ($key, $value) = split(/\=/, $.);
Skey =" tr/+/ /;
$key =" s/%([0—9a—fA-F]{2})/pack(”C”, hex($1))/ge;
$value =" tr/+/ /;
$value =" s/%([0—9a—fA-F]{2})/pack(”C”, hex($1))/ge;
$ret_ref —>{"8$key”} = " $value”;

}

HTMI-Tabelle mit Telefonnummern ausgeben
sub diallist ()

{

my $values = shift;
my $title = shift;
my $url_ext = shift;

&page_start ($title , 1);

$dir = (Shttp-post{dir} eq ”desc” ? "asc” : 7desc”);

print "<table_class=\"tablel\”>\n<tr>”
?<th><a_href=\"7sort=name&dir=8%dir$url_ext\”>Name</th>\n”
?<th><a_href=\"7sort=mail&dir=8dir$url_ext\”>Email</th>\n” .
?<th><a_href=\"7?sort=phone&dir=%dir$url_ext\”>Telefon </th>\n”
’<th>Aktion</th></tr >\n";

$color = 2;
$sort = $http-post{sort};
$sort = "name” if (($sort ne ”"mail”) && ($sort ne ”phone”));

$dir = (Shttp-post{dir} eq ”desc” ? —1 : 1);
foreach (sort {
($values —>{$a}—>{$sort} cmp $values —>{$b}—>{$sort}) =+ $dir
} keys %$values) {
$skip = scalar keys %{$values—>{$_}—>{extra_phones}};
$skip++;
$color = 3 — $color;
print "<tr>\n”.
"<td._rowspan=\"$skip\”_class=\"td$color\”">$values —>{$_}—>{name}</td>" .
"<td.rowspan=\"$skip\”.class=\"td3color\">$values —>{$_}—>{mail}</td>".
"<td_class=\"tdScolor\”>$_</td>\n<td_class=\"td$color\”>";
if ($user ne $_) {
Benutzer soll sich nicht selbst anrufen koennen
print "<a_href=\"7action=dial&exten=%_&dialexten=$_\">Anrufen";

print ”</td>\n</tr>\n";
foreach $phone(sort keys %{$values—>{$_}—>{extra_phones}}) {
print "<tr>\n<td_.class=\"td$color\”>$phone</td>\n<td._class=\"td$color\”">";
if (Suser ne $phone) {
print "<a_href=\"?action=dial&exten=3%_&dialexten=$phone\”>Anrufen";
}
print ”</td>\n</tr>\n";
}
}
print "</table>";
&page_end (1);

Grundgeruest einer HIMI-Seite ausgeben
sub page_start ()

o6

425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
417
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495

E AD2AST

E.2 ad2ast_dial.pl

my $title = shift;

my $menu = shift;

my $redirect = shift;

my $app_title = "AD2AST_Dialer”;
$app-title .= 7"_—_$title” if $title;

$redirect = ”\n<meta_http—equiv=\"Refresh\” .content=\"0;_url=%redirect\”>”

if $redirect;

print <<EOF;
Content—Type: text/html

<html>
<head>
<title>$app-title</title>
<style type="text/css”>
<l——
body {
color: black;
background: white;
font—family: sans—serif;
font—size: 12px;
margin: Opx;
padding: Opx;
}
th {
background—color : white;
padding:2px;

}

.tablel {
background—color :#fc0 ;

}

.td1 {
background—color :#a5a5ab;
padding:2px;

.td2 {
background—color :#d5d5d5 ;
padding:2px;

}

.error {
color :red;

}

.headImg {
float: left;
margin—top: O0;
margin—left: O0;
height: 86px;
width: 314px;
padding: 3px 3px 3px 18px;
background—color: #999999;
border: Opx solid black;

.headTxt {
float: left right;
margin: O0;
height: 86px;
padding: 3px;
background—color: #999999;
text—align: center;
font—weight: bold;
font—size: 124%:;

}

//==>

</style>$redirect

</head>

<body>

<div class="headlmg”>
<img src="/fh_logo.gif” alt="FH-Logo”
</div>

border="0">

o7

496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566

E AD2AST E.2 ad2ast_dial.pl

<div class="headTxt”>

Labor für Angewandte Informatik und Mathematik
</div>

EOF

if ($menu) {

print <<EOF;

<table width="99%" height="79%">
<tr><td valign="top” height="99%" style="border:1px.solid_black;_padding:5px;”>
<p style="white—space: _nowrap”>Eingeloggt als:
$records{$user}—>{name} ($user)</p>

Teilnehmerliste

Teilnehmer ;suchen

Meine ; Rufnummern

Abmelden</td>
<td width="99%" height="99%" valign="top” style="padding—left :5px”">
<hl>$title </h1>
EOF

}
}

HTMI-Seite beenden
sub page_end ()

{

my $menu = shift;

print "</td></tr></table>\n”" if $menu;
print ”</body></html>\n";

}

Fehlerseite

sub fatal_error ()

{
&page_start (" Fehler”);
¢er_page_start (” Fehler”);
print "<p.class=\"error\”>$_[0]</p>\n";
¢er_page_end ();
&page_end ();
exit (1);

}

in HTML mittig & zentriert ausgeben
sub center_page_start ()

{
my $title = shift;
print <<EOF;
<table width="99%" height="79%">
<tr>
<td width="99%" height="99%" align="center” valign="middle”>
EOF

print "<hl1>$title </h1>\n” if $title;

}

mittig € zentriert beenden
sub center_page_end ()

print "</td></tr></table>\n";

Loginmaske ausgeben
sub login_page ()
{

my $error = shift;

&page_start (” Anmeldung”);
¢er_page_start (” Anmeldung”);
print "<p_class=\"error\”>8error </p>\n” if S$error;
print <<EOF;
<p>Willkommen bei <i>Active Directory to Asterisk</i> (AD2Ast).

Dies ist ein Demo—System des Labors fiir Angewandte Informatik und Mathematik

o8

567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601

E AD2AST E.2 ad2ast_dial.pl

der FH Bielefeld.

Mit diesem System koénnen Sie eine Voice over IP—Verbindung zu einem
Gespréachspartner aufbauen,

sofern dessen Kontaktdaten im laborinternen Active Directory eingetragen
sind.
</p>
<form method="POST” name="loginform”>
<input type="hidden” name="action” value="login”>
<table>
<tr><td>Benutzer:</td><td><input type="text” name="username”’></td></tr>
<tr><td>Passwort:</td><td><input type="password” name="password”></td></tr>
<tr><td colspan="2" align="center”>
<input type="submit” value="Einloggen”></td></tr>
</table>
</form>
<script type="text/javascript”’>
<!—
if (document.loginform .username) document.loginform .username.focus ();
//—>
</script >
EOF
¢er_page_end ();
&page_end ();

Cookie setzen
sub set_cookie ()

{
}

Cookie loeschen (=leeres Cookie schreiben)
sub destroy_cookie ()
{

&set_cookie ();

}

print ”Set—Cookie:_.$cookie_name=$_[0]; _path=8$cookie_path\n”;

99

0O Utk WN

E AD2AST

E.3 ad2ast_subs.pl

E.3. ad2ast_subs.pl

Konfigurationswerte
Sync—Skript + Webfrontend

$db_type = "mysql”;

$db_host = ”localhost”;

$db_port = wundef;

$db_name = "astdb”;

$db_user = "asterisk”;

$db_pass = "test”;

$ad_table = "adtbl”;

$user_table = "usrtbl”;

Sync—Skript

$domain = ”infma—labor.local”;

@nameservers = (7192.168.1.6”7, ”192.168.1.7");
@ldap_servers = (7192.168.1.6”7);

$base_dn = undef;

$bind_dn = 7cn=Felix_.Ogris ,ou=Stuff ,ou=User” ;
$append_base_dn_to_bind_dn = 1;

$bind_pw = "geheim” ;

$search_dn = ”cn=Doménen—Asterisk ,ou=Global=ou=Groups” ;
$append_base_dn_to_search_dn = 1;

Webfrontend

$manager_host =7192.168.1.47;

$manager_port = 5038;

$manager_user = ”ad2ast”;

$manager_pass = "test”;

$cookie_name = ”ad2ast_id”;

$cookie_path ="/,

$auth_host =7192.168.1.47;

globale Subroutinen

sub db_connect ()

my $dbh = shift;
my $dsn = "DBI: $db_type:dbname=$db_name” ;
$dsn .= ”;host=8%$db_host” if $db_host;
$dsn .= ”;port=$db_port” if $db_port;
$8dbh = DBI—>connect ($dsn, $db_user, $db_pass,
{ RaiseError => 0, PrintError => 0 });
return ”Database_error:.” DBI:: errstr if DBI::err;
return "7 ;

}

sub db_disconnect ()

my $dbh = shift;
$dbh—>disconnect ();
}

sub db_prepare ()

{
my $dbh =
my $sth =

shift ;
shift;

$$sth =
return
return

$dbh—>prepare (Q_);

”Database_error:.”
” N,
K

}

sub db_finish ()
{

$dbh—>errstr

if $dbh—>err;

60

70
71
72

E AD2AST

E.3 ad2ast_subs.pl

my $sth = shift;
$sth—>finish ();
$sth = undef;

}

sub db_execute ()

{
my $sth = shift;

$sth—>execute (Q_);

return ”Database_error:.”

return

}

»» .,
’

sub db_begin_transaction ()

{
my $dbh = shift;
$dbh—>begin_work ();
return ”Database_error:.
return 77

}

sub db_end_transaction ()

{
my $dbh = shift;
$dbh—>commit () ;

return ”Database_error:.”

return "7 ;

”

$sth—>errstr

$dbh—>errstr

$dbh—>errstr

61

if $sth—>err;

if $dbh—>err;

if $dbh—>err;

0O Utk WN

E AD2AST E.4 ad2ast_sync.pl

E.4. ad2ast_sync.pl

#!/usr/bin/perl

Module einbinden
use Net ::DNS;

use Net ::LDAP;

use DBI;

Subroutinen und Konfiguration einlesen
require ”ad2ast_subs.pl”;

Base DN + Bind DN bestimmen

$base_.dn = join(”,”, map { 7dc=$." } split(/\./, $domain))
unless defined $base_dn;
$bind_dn .= ” ,$base_.dn” if $append_base_dn_-to_bind_dn;

Search DN bestimmen
$search_dn .= ” $base_.dn” if $append_base_dn_to_search_dn;

LDAP Server ermitteln

unless (defined @ldap_servers) {
$err = &get_ldap_servers (3domain, \@ldap_servers, @nameservers);
die S$err if Serr;

}

LDAP Server konnektieren
$ldap = Net::LDAP—>new(\ @ldap_servers) or die ”§!”;

LDAP Server binden
$result = $ldap—>bind ($bind_dn, password => $bind_pw);

die $result—>error_text if $result—>is_error;

Personen suchen

$search = $ldap—>search (base => $base_dn
scope => "sub”,
attrs => [”displayName” , ”mail”,

”ipPhone” , #”otherIpPhone”,

#”telephoneNumber”, “otherTelephone”,

#”homePhone”, ”otherHomePhone”
#"mobile”, ”"otherMobile”

filter => ”(&(ipPhone=x)(memberOf=$search_dn))”);

FErgebnis holen
$entries = $search—>as_struct ();

Ergebnis normalisieren
%ad_records = ();
foreach $dn(sort keys %$entries) {
my %values = ();
foreach S$attr(sort map { lc(3.) } keys %{8entries—>{$dn}}) {
$value = ${3entries —>{3dn}—>{Sattr } } [0];
if ($attr eq "ipphone”) {
warn ”phone_number_$value_is_used_multiple_time”
if exists $ad_records{$value};
$ad_records{$value} = \%values;

else {

warn ”object _$dn_has.multiple_$attr_attributes” if exists $values{Sattr};

$values{$attr} = $value;
}
}
}

LDAP Verbindung beenden
$ldap —>unbind ();
$ldap—>disconnect ();

Datenbank konnektieren
$err = &db_connect (\$dbh);

62

E AD2AST E.4 ad2ast_sync.pl

70 die S$err if Serr;

72 # Transaktionsblock einleiten
73 $err = &db_begin_transaction ($dbh);
74 die S$err if Serr;

76 # Bestandsdaten aus der AD Tabelle auslesen

77 $err = &db_prepare($dbh, \$sth, ”?SELECT_x_FROM.$ad_table FOR_UPDATE”);
78 die $err if $err;

79 S$err = &db_execute($sth);

80 die $err if $err;

81 %old_ad_records = %{$sth—>fetchall_hashref(”phone”)};

82 &db_finish ($sth);

84 # Statements zum FEinfuegen, Aktualisieren und Loeschen wvorbereiten
85 $i = 0;
86 foreach (”INSERT_INTO.S$ad_table._ (phone,gmall,uname,ulast mod).’

87 ?VALUES. (?7,.7,.7 ,_now())
88 "UPDATE.$ad_table .SET_.mail=7?,_name= ?,ulast,mod =now () WHEREuphone:?”7
89 ?DELETE_FROM. $ad _table -WHERE_phone=?") {

90 $err = &db_prepare ($dbh, \$sth[$i], $.);
91 die S$err if S$err;

92 $i++;

93}

95 # 1. Schritt: alles loeschen, was micht mehr im AD vorhanden ist
96 foreach $phone(keys %old_ad_records) {

97 next if exists $ad_records{$phone};

98 $err = &db_execute ($sth[2], $phone);

99 die S$err if Serr;

100 }

102 # 2. Schritt: neue Eintraege aus dem AD einfuegen wund bestehende aktualisieren
103 foreach $phone(keys %ad_records) {

104 $mail = $ad_records{$phone}—>{mail };

105 $name = $ad_records{$phone}—>{displayname };

106 if (!exists $old_ad_records{$phone}) {

107 # neuer FEintrag

108 $err = &db_execute($sth [0], $phone, $mail, $name);
109 die $err if Serr;

110 next ;

111

112 # bestehender Eintrag —> Werte vergleichen
113 $old_mail = $old_ad_records{$phone}—>{mail };
114 $old_name = $old_ad_-records{$phone}—>{name};

115 if (($mail ne $old_-mail) || ($name ne $old_name)) {
116 $err = &db_execute($sth[1], $mail, $name, $phone);
117 die S$err if Serr;

18}

119 }

120

121 # Datenbankverbindung beenden

122 $err = &db_end_transaction ($dbh);
123 die $err if S$err;

124 foreach (@sth) {

125 &db _finish ($_);

126}

127 &db_disconnect ($dbh);

128

129 # Programmende

130 exit 0;

131
132
133
134 # lokale Subroutinen #
135
136
137 # IP—Adressen und Portnummern zu LDAP-Servern in einem AD herausfinden
138 sub get_ldap_servers ()

139

140 my $domain = shift;

63

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

E AD2AST

E.4 ad2ast_sync.pl

my $return_array = shift;
my %ldap_servers = ();

1. Schritt:

SRV—Records

holen

my $dns_res = Net::DNS:: Resolver—>new ();
$dns_res—>nameservers (@Q_.) unless ($#_ < 0);

my $dns_pkt

$dns_res—>query (” .1dap . _tcp.” . $domain, ”SRV”);

return $dns_res—>errorstring unless defined $dns_pkt;
foreach my $dns_rr($dns_pkt—>answer ()) {

next unless ($dns_rr—>type() eq "SRV”);
$dns_rr—>priority ();
my $weight = $dns_rr—>weight ();

my $prio

my $target

}

2. Schritt:

= S$dns_rr—>target ();
$ldap.-servers{$prio}—>{$weight}—>{$target} = $dns_rr—>port ();

SRV—Records

sortieren und IP—Adressen bestimmen

foreach my $prio(sort { $b <=> $a } keys %ldap_servers) {
my $this_prio = $ldap._servers{$prio};
foreach my $weight (sort { $b <=> $a } keys %Sthis_prio) {
my $this_weight = $this_prio —>{Sweight };
foreach my $target (sort keys %$this_weight) {
my $dns_pkt = $dns_res—>query($target);
next unless defined $dns_pkt;
foreach my $dns_rr($dns_pkt—>answer ()) {
next unless ($dns_rr—>type() eq "A”);
IP:Port gefunden!
push @S$return_array, $dns_rr—>address() . ”:$this_weight —>{$target}”;

}
}
}

return
return

}

?no_.LDAP_servers._available” if ($#8%return_array < 0);

»» .,

64

0O Utk WN

E AD2AST E.5 ad2ast_xml.pl

E.5. ad2ast_xml.pl

#!/usr/bin/perl

Module einbinden
use DBI;

Subroutinen und Konfiguration einlesen
require ”ad2ast_subs.pl”;

Datenbank konnektieren
$err = &db_connect (\$dbh);

Daten aus dem AD

$err = &db_prepare ($dbh, \$sth, "SELECT.x.FROM.S$ad_table”);

return $err if Serr;

$err = &db_execute ($sth);

return $err if S$err;

while (my $row = $sth—>fetchrow_hashref()) {
$records{$row—>{phone}}—>{name} = $row—>{name};
$records{$row—>{phone}}—>{mail} = $row—>{mail };

}
&db _finish ($sth);

von den Benutzern gefiihrte Telefonlisten

$err = &db_prepare ($dbh, \$sth, "SELECT.x.FROM.S$user_table”);

return $err if S$err;

$err = &db_execute ($sth);

return $err if S$err;

while (my $row = $sth—>fetchrow_hashref()) {
$records{$row—>{phone}}—>{extra_phones}—>{$row—>{extra_phone}} =

$row—>{comment };

}
&db_finish ($sth);
&db_disconnect ($dbh);

XML ausgeben
print ”Content—Type: _text/xml\n\n<?xml_version=\"1.0\"?>\n<AddressBook>\n";
foreach (sort keys %records) {
my ($fname, $lname) = split(/ /, $records{$_}—>{name});
&print_contact ($fname, $lname, $_);
foreach $phone(sort keys %{$records{$_}—>{extra_phones}}) {
&print_contact ($fname, $lname, $phone);

}

print ”</AddressBook>\n";

Programmende
exit (0);

lokale Subroutinen

einen Telefonbucheintrag ausgeben
sub print_contact ()
{

my $fname = shift;

my $lname = shift;

my $phone = shift;

print "<Contact>\n<LastName>$lname </LastName>\n"
?<FirstName>$fname </FirstName >\n<Phone>\n"
?<phonenumber>$phone</phonenumber>\n”
?<accountindex >0</accountindex >\n</Phone>\n</Contact >\n";

65

0O Utk WN

E AD2AST

E.6 ad2ast.sql

E.6. ad2ast.sql

— MySQL Datenbankschema fuer AD2Ast

CREATE TABLE adtbl (
phone TEXT,
mail TEXT,
name TEXT,
last_-mod DATETIME

)
CREATE TABLE usrtbl (

phone TEXT,
extra_phone TEXT,
comment TEXT

);

66

E AD2AST

E.7 ad2ast_auth

E.7. ad2ast_auth

Jetc/zinetd.d/ad2ast_auth
description :

Authentifizierungsdienst fuer AD2Ast

service ad2ast_auth

{

socket_type
protocol
port

wait

server

type

user
disable

stream
tcp
6666
no

/usr/local/lib/ad2ast/ad2ast_auth. pl

UNLISTED
asterisk
no

67

E AD2AST E.S8

ad2ast.conf

E.8. ad2ast.conf

/etc/apache2/vhosts.d/ad2ast.conf
Apache2 Konfigurationsdatei fuer den AD2Ast Virtual Host

1
2
3
4 <VirtualHost 192.168.1.18:80 >

5 ServerAdmin webmaster@host.invalid
6

7

8

ServerName infma—Inxp.fh—bielefeld .de

DocumentRoot /srv/www/ad2ast/htdocs

9

10 ErrorLog /var/log/apache2/ad2ast.error_log

11 CustomLog /var/log/apache2/ad2ast.access_-log combined
12

13 HostnameLookups Off

14 UseCanonicalName Off

15 ServerSignature On

16

17 ScriptAlias /cgi—bin/ ”/srv /www/ad2ast/cgi—bin/”
18

19 <Directory ”/srv/www/ad2ast/cgi—bin”>

20 AllowOverride None

21 Options +ExecCGI —Includes

22 Order allow ,deny

23 Allow from all

24 </Directory >

25

26 <IfModule mod_userdir.c>

27 UserDir public_html

28 Include /etc/apache2/mod_userdir.conf

29 </IfModule>

30

31 RedirectMatch 301 "\/$ /cgi—bin/ad2ast_dial.pl
32

33 <Directory 7 /srv/www/ad2ast/htdocs”>

34 Options Indexes FollowSymLinks

35 AllowOverride All

36 Order deny, allow

37 </Directory >

38

39 </VirtualHost>

68

N O U W N

F KONFIGURATIONSDATEIEN

F. Konfigurationsdateien

Nachfolgend sind alle Konfigurationsdateien des Asteriskservers aufgefiihrt, die gegeniiber
einer Standardinstallation verédndert wurden.

F.1. cdr_pgsql.conf

[global]
hostname=/tmp
port=>5432
dbname=astdb
password=test
user=asterisk
table=cdr

69

0O Utk WN

F KONFIGURATIONSDATEIEN

F.2 extensions.conf

F.2. extensions.conf

[default]
exten =>
exten =>
exten =>
exten =>
exten =>
exten =>
exten =>
exten =>
exten =>
exten =>
exten =>
exten =>
exten =>
exten =>
exten =>
exten =>
exten =>
exten =>
exten =>
exten =>
exten =>

2000,1, Dial (SIP/gs0)
2000,n, Voicemail (2000)
2000,n,Hangup ()

2001,1,Dial (SIP/gs1)
2001 ,n, Voicemail (2001)
2001 ,n,Hangup ()

5000,1,Answer ()
5000,n, VoiceMailMain ()
5000,n,Hangup ()

_5000XXXX,1,Answer ()

_5000XXXX ,n, VoiceMailMain (${EXTEN:4})

_5000XXXX ,n,Hangup ()

_6000X ,1, Answer ()
_6000X ,n, MeetMe (${EXTEN:4} , i)
_6000X ,n,Hangup ()

_0.,1,Dial (CAPI/gl ,${EXTEN:1})
_0.,n,Hangup ()

X.,1,Answer ()
_X.,n,Zapateller ()

_X.,n,Festival (This number is not assigned.)

_X.,n,Hangup ()

70

0O Utk WN

F KONFIGURATIONSDATEIEN

F.3 manager.conf

F.3. manager.conf

[general]
enabled = yes

[ad2ast]

secret = test
deny=0.0.0.0/0.0.0.0
permit=127.0.0.1
permit=192.168.1.0/24

71

[y

F KONFIGURATIONSDATEIEN

F.4 meetme.conf

F.4. meetme.conf

[rooms]
conf => 0
conf => 1,0815

72

0O Utk WN

F KONFIGURATIONSDATEIEN F.5 modules.conf

F.5. modules.conf

5

; Asterisk configuration file

5

; Module Loader configuration file

3

[modules]
autoload=yes

; Any modules that need to be loaded before the Asterisk core has been

; initialized (just after the logger has been initialized) can be loaded

; using ’preload ’. This will frequently be needed if you wish to map all

; module configuration files into Realtime storage, since the Realtime

; driver will need to be loaded before the modules using those configuration
; files are initialized.

; An example of loading ODBC support would be:
;preload => res_odbc.so

;preload => res_config_odbc.so

; If you want, load the GIK console right away.
; Don’t load the KDE console since

; it ’s not as sophisticated right now.

b

noload => pbx_gtkconsole.so

;load => pbx_gtkconsole.so

noload => pbx_kdeconsole.so

5

; Intercom application is obsoleted by
; chan_oss. Don’t load it.

b

noload => app-intercom.so

5

; The 'modem’ channel driver and its subdrivers are
; obsolete, don’t load them.

K

noload => chan_modem. so

noload => chan_modem_aopen.so
noload => chan_modem_bestdata.so
noload => chan_modem_i4l. so

load => res_musiconhold.so
; Load either OSS or ALSA, not both
; By default, load OSS only (automatically) and do not load ALSA

noload => chan_alsa.so

noload => chan_oss.so

; Module names listed in ”global” section will have symbols globally
; exported to modules loaded after them.
noload => cdr_csv.so

noload => cdr_custom.so

noload => chan_mgcp.so

noload => chan_skinny.so

noload => pbx_dundi.so

[global]

chan_capi.so=yes

73

0O Utk WN

F KONFIGURATIONSDATEIEN

F.6 sip.conf

F.6. sip.conf

[general]
bind=0.0.0.0
port=>5060
disallow=all
allow=ulaw
allow=alaw
allow=gsm
language=de

[gs0]

type=friend
context=default
deny=0.0.0.0/0
permit=192.168.1.230
username=gs0

secret =0002
mailbox=2000
callerid=Grandstream 0 <2000>
canreinvite=yes
host=dynamic

[gs1]

type=friend
context=default
deny=0.0.0.0/0
permit=192.168.1.231
username=gsl
secret=1002
mailbox=2001
callerid=Grandstream 1 <2001>
canreinvite=yes
host=dynamic

74

U W N

F KONFIGURATIONSDATEIEN F.7 voicemail.conf

F.7. voicemail.conf

[general]
format=wav

[default]

2000 => 0002,Grandstream 0,root@localhost
2001 => 1002,Grandstream 1,root@localhost

75

	Einleitung
	Aufgabenstellung und Szenarien
	Asterisk
	Kurzvorstellung
	Installation
	Abhängigkeiten
	PostgreSQL
	mpg123
	zaptel
	Asterisk
	ISDN-Karte

	Komponenten und deren Konfiguration
	Dialplan
	Session Initiation Protocol
	IAX / IAX2
	Call Detail Record Engine
	MeetMe
	Voicemail
	Queues
	Asterisk Manager Interface
	Sprachpakete
	Festival
	Weitere Dienste

	Managementtools
	gastman
	Flash Operator Panel

	Endgeräte
	Softphones
	X-Lite
	Snom
	3CX Phone
	JackenIAX
	Idefisk
	Kiax

	Hardphones
	Grandstream
	Snom

	AD2Ast
	ad2ast_sync.pl
	ad2ast_dial.pl
	ad2ast_auth.pl
	ad2ast_xml.pl

	Integration in das Labornetz
	Ausblick
	Todo
	ENUM & DUNDi
	AGI Skripte
	Protokolluntersuchung
	Asterisk-Module

	Version 1.4

	Literatur
	Software
	Asteriskserver
	Softphones

	PostgreSQL Startskript
	Asterisk Startskript
	AD2Ast
	ad2ast_auth.pl
	ad2ast_dial.pl
	ad2ast_subs.pl
	ad2ast_sync.pl
	ad2ast_xml.pl
	ad2ast.sql
	ad2ast_auth
	ad2ast.conf

	Konfigurationsdateien
	cdr_pgsql.conf
	extensions.conf
	manager.conf
	meetme.conf
	modules.conf
	sip.conf
	voicemail.conf

