Diplomarbeit zur Erlangung des Grades Diplom-Ingenieur (FH)

Fachhochschule Bielefeld
Erstpriifer: Prof. Dr. rer. nat. Christian Schréder
Zweitpriifer: Prof. Dr. math. Wolfgang Bunse

Integration des Troubleticketsystems OTRS
bei einem mittelstandischen Unternehmen

Felix J. Ogris (fjo@Qogris.de)
Matr.-Nr.: 203583

Datum der Abgabe: 15. Januar 2008

Erklarung entsprechend der ADPO vom 25.06.1982 § 26 Abs. 1

Ich versichere, dass ich die Diplomarbeit selbststéindig verfasst und keine, als die von
mir angegebenen Hilfsmittel benutzt und bei Zitaten die Quellen kenntlich gemacht habe.

Mir ist bekannt, dass ich meine Diplomarbeit nach Ablauf der Aufbewahrungsfrist von
5 Jahren zuriickbekommen kann.

Herford, 15.01.2008

Unterschrift

In dieser Diplomarbeit wird ein System entwickelt, welches mehrere Instanzen des
Open Ticket Request Systems OTRS auf einer Plattform bereitstellt. Die Instanzen sind
bis auf Betriebssystemebene gegeneinander isoliert, so dass das System mehrere OTRS-
Instanzen fiir Kunden bereitstellen kann. Mit Hilfe einer eigens entwickelten Erweiterung
konnen die Instanzen jedoch lose per Email gekoppelt werden. Zudem wird jede Instanz
mit einer SOAP-Schnittstelle ergénzt, mit der Projekte und Kundendaten aus anderen
Systemen automatisiert angelegt werden kénnen. Fiir die Selbstverwaltung durch einen
Kunden wurden ausserdem zwei Erweiterungen erstellt, die es erméglichen, eine Instanz
unter verschiedenen Webadressen erreichbar zu machen und die Benutzerschnittstelle zu
verandern. Vor der Darstellung der entwickelten Erweiterungen werden die vielfialtigen
theoretischen Grundlagen diskutiert.

This diploma thesis presents a system which makes it possible to setup multiple in-
stances of the Open Ticket Request System OTRS on one platform. As these instances
are isolated against each other at the operating system level, one hardware platform can
be used for many customers. By using a self-developed extension those instances can
loosely be coupled by email. Each instance can be equipped with a self-developed SOAP
interface which allows the user to import customer data and projects from other sy-
stems. Two additional extensions allow the customers to modify the user interface to fit
their needs and to make each instance reachable under different hostnames. Prior to the
presentation of each self-developed extension a discussion of the theoretical background
is given.

Inhaltsverzeichnis Inhaltsverzeichnis
Inhaltsverzeichnis

1. Prolog 11

2. Hardware 13

2.1. Entwicklungssystem Lo o 13

2.2. Produktivsystem 13

3. Betriebssystem 15

3.1. Einfithrung in FreeBSD o oo 15

3.2. Imstallation 16

3.3. Starten von Systemdiensten Lo 18

3.4. Portssystemo 18

4. Anwendungsprogramme 20

4.1. Apache 20

4.1.1. Einleitung oL oL 20

4.1.2. Imstallation 20

4.1.3. Konfiguration L Lo 21

4.1.4. mod.perl2 23

4.2. PostgreSQL e 25

4.2.1. Einleitung Lo 25

4.2.2. Installation L Lo 26

4.2.3. Konfiguration L L Lo 27

4.3. Postfix e e e e 29

4.3.1. Einleitung Lo 29

4.3.2. Imstallation 29

4.3.3. Konfiguration L Lo 29

4.4. OpenSSL L e 32

5. Programmiersprachen 36

5.1 Perl oo e e 36

5.1.1. Aufruf e 36

5.1.2. Variablen 37

5.1.3. Giiltigkeitsbereicho oo oo 41

5.1.4. Operatoren e 41

5.1.5. Regulédre Ausdriicke 42

5.1.6. Kontrollstrukturen Lo oL 45

5.1.7. Funktionen e 46

5.1.8. Module und Packages oL 51

5.1.9. Objektorientiertes Programmieren 52

5.1.10. Pragmatisches Perl o 0oL 54

5.1.11. Plain Old Documentation 55

5.2. Shellscripting e e 57

6. Auszeichnungssprachen 63

6.1. XML e 63

6.1.1. DTD e 64

6.1.2. Namensrdume 0 oo 66

6.1.3. XML Schema e 67

6.2. XSLT . . . 70

Inhaltsverzeichnis Inhaltsverzeichnis

6.3. SOAP . . . e 73
6.4. WSDL o 74
7. Datenbankabfragesprachen 79
710 SQL . o 79
8. OTRS 86
8.1. Imstallation e 86
8.2. Administration e 87
8.3. Module e 88
8.4. Modulprogrammierung 90
8.5. Templates e e 91
9. Entwickelte Module 93
9.1. DTSTicketNumber o 93
9.1.1. Beschreibung e 93

9.1.2. Konfigurationsparameter 94

9.2. DTSLib e 95
9.2.1. Beschreibung e 95

9.2.2. Konfigurationsparameter 95

9.3. DTSFreetext e 96
9.3.1. Beschreibung 96

9.3.2. Konfigurationsparameter 97

9.4. DTSTheme e 99
9.4.1. Beschreibung e 99

9.4.2. Konfigurationsparameter 99

9.5. DTSVirtualHost 102
9.5.1. Beschreibung e 102

9.5.2. Konfigurationsparameter 102

9.6. DTSMaster o e e 105
9.6.1. Beschreibung oo 105

9.7. DTSAddress. o e 107
9.7.1. Beschreibung 107

9.7.2. Konfigurationsparameter 108

9.8. DTSSoapUser o e 111
9.8.1. Beschreibungo 111

9.8.2. Konfigurationsparameter 115

9.9. DTSNotifyAgentAsterisk. oo 116
9.9.1. Beschreibung 116

9.9.2. Konfigurationsparameter 117

A. Literatur 118
B. CD-ROM 121

Abkiirzungsverzeichnis Abkiirzungsverzeichnis

Abkiirzungsverzeichnis

ACL Access Control List

AD ..o Active Directory

AES ... Advanced Encryption Standard

AMI ...l Asterisk Manager Interface

AT&T ..ol American Telephone & Telegraph Corporation
BNF ... Backus-Naur-Form

BSD ...l Berkeley Software Distribution

CA Certificate Authority

CAPI Common Application Programming Interface
CGI Common Gateway Interface

CPU Central Processing Unit

DAV ... Distributed Authoring and Versioning
DES Data Encryption Standard

DMZ Demilitarisierte Zone

DSA ...l Digital Signature Algorithm

DTD Document Type Definition

EBNF Erweiterte Backus-Naur-Form

FTP ...t File Transfer Protocol

GB ... Gigabyte; 1GB = 10° Byte

GiBoo. Gibibyte; 1GiB = 23°Byte

GPL General Public License

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

ISDN Integrated Services Digital Network
ISP ... Internet Service Provider

LDAP Lightweight Directory Access Protocol
LIFO Last In, First Out

MiB ..., Mebibyte; 1MiB = 22° Byte

MTA Mail Transfer Agent

NES ... Network File System

NSA ...l National Security Agency

OTRS Open Ticket Request System

Perl Practical Extraction and Report Language
PHP PHP Hypertext Preprocessor

PI ... Processing Instruction

POD Plain Old Documentation

RADIUS Remote Authentication Dial-In User Service
RAID Redundant Array of Independent Disks
TegeX ..., regular expression

RPC Remote Procedure Call

RSA Rivest-Shamir-Adleman

SCST Small Computer System Interface

SHA Secure Hash Algorithmus

SMTP Simple Mail Transfer Protocol

SNMP Simple Network Management Protocol
SOAP Simple Object Access Protocol

SQL ... Structured Query Language

SSH Secure Shell

Abkiirzungsverzeichnis Abkiirzungsverzeichnis

SSL ..o Secure Sockets Layer

TCP .o Transmission Control Protocol

UC Berkeley University of California, Berkeley

URI ..., Uniform Resource Identifier

URL Unified Resource Locator

W3C ..o World Wide Web Consortium

WAL ... Write Ahead Logging

WS-T oo Web Services Interoperability Organization
WSDL Web Services Description Language

WWW oo World Wide Web

XML ...l Extensible Markup Language

XSL oo Extensible Stylesheet Language

XSL-FO Extensible Stylesheet Language Formatting Objects
XSLT ..o Extensible Stylesheet Language Transformations

Abbildungsverzeichnis Abbildungsverzeichnis

Abbildungsverzeichnis

S R

Compaq Proliant DL360 13
HP Proliant DL360 G4 e 13
Das Installationsmenti von FreeBSD 17
Die Suche nach einem Programm im Portssystem 19
Das Optionsmenii zur Installation des Apache Webservers 20
Das Optionsmenii zur Installation des PostgreSQL Datenbankservers . . . 26
Passwortéinderung fiir den Administrator des PostgreSQL Datenbankservers 27
Das Optionsmenii zur Installation des Postfix Mailservers 30
Per pod2html erzeugte HTML-Dokumentation des Quellcodes Y
Der Webbrowser Firefox als XSLT-Parser 73
Der schematische Aufbau eines PostgreSQL-Datenbankclusters 84
Das Optionsmentii zur Installation von OTRS 86
Der schematische Aufbau von OTRS 89
Freitextfelder beim Anlegen eines neuen Tickets 96
Administration der Freitextfelder 97
Administration der Themes 100
Modifikation eines Templates L. 101
Administration der Virtualhosts. 104
DTSMaster.pl zum Anlegen neuer OTRS-Instanzen 105
Ticketansicht mit der Schaltfliche zum Delegieren 107
Ticketdelegation 108
Adressbuch fiir Ticketdelegationen 109
Anlage eines neuen SOAP-Benutzers 111
Import der SOAP-Funktionen in Microsoft Visual Studio 114

Tabellenverzeichnis Tabellenverzeichnis

Tabellenverzeichnis

S IR

Ausgewihlte Konfigurationsparameter des Apache Webservers. 21
Ausgewihlte Operatoren in Perl 42
Vordefinierte Zeichenklassen in reguldren Ausdriicken 43
Ausgewi#hlte Anweisungen in Perlo L 45
Ausgewé#hlte Funktionen in Perl 48
Bedingte Wertezuweisungen in der Shellprogrammierung 59
Ausgewéhlte Tests des Shelloperators [bzw. des Programmes test 60
Ausgewahlte Datentypen in PostgreSQL 80

10

1 PROLOG

1. Prolog

Die vorliegende Arbeit beschreibt die technische Integration des Open Ticket Request
System (OTRS) bei der DTS Firmengruppe in Herford. Im Laufe der Arbeit wurden
die Abteilungen Security, Data Center und Internet Service, welche die betrieblichen
Resourcen fiir diese Arbeit bereitstellte, zum 1. Januar 2008 in die DTS Systeme GmbH
integriert. Der Bedarf nach einem funktional gekoppelten, aber dennoch in eigenstandige
Bereiche unterteiltem Ticketsystemen verlor hierdurch an Bedeutung. Vielmehr musste
ein System geschaffen werden, welches auch Kunden bereitgestellt werden kann. Die
urspriingliche Anforderung, das OTRS an das vorhandene Projektsystem Work@Web
anzubinden, blieb erhalten. Hier musste eine HTTP-GET-Schnittstelle geschaffen wer-
den und fiir zukiinftige Erweiterungen eine SOAP-Schnittstelle implementiert werden.
Letzteres nimmt zusammen mit den notwendigen theoretischen Erlduterungen in Ka-
pitel 6 einen grossen Teil dieser Arbeit ein. Eine besondere Herausforderung bestand
darin, schon wéahrend der Einarbeitungs- und Implementierungsphasen in den Dialog
mit Kunden zu treten, die inhaltliche und terminliche Zusagen erwarteten. Als zeitin-
tensive Fehlentscheidung hat sich das Festhalten am urspriinglichen Design erwiesen,
welches ein mandantenfihiges OTRS vorsah. Die Idee war, die Sicht auf die Datenbank
anhand des Hostnamens zu beschrénken, iiber den der Benutzer auf das OTRS zugegrif-
fen hat. Jedoch besitzt jede OTRS-Instanz einen eindeutigen Hostnamen. Dieser wird
an vielen Stellen wie z.B. in Emailtexten verwendet. Im webbasierten Teil von OTRS
ist dies durch eine neue Datenbankschicht 16sbar. Automatisierte Wartungsarbeiten z.B.
durch periodisch ausgefiihrte Skripte greifen jedoch auf den fest konfigurierten Hostna-
men zuriick. Diese hitten neu gestaltet werden miissen, was ein Update des Systems
unnotig erschwert. Zudem ist das Berechtigungssystem von OTRS nicht fiir eine der-
artige mandatenbasierte Losung ausgelegt. Empirisch ist ausserdem belegt, dass selbst
technisch nicht versierte Kunden ein System selbsttétig administrieren méchten. Dies ist
nur mit getrennten OTRS-Instanzen moglich, wie sie letztendlich realisiert wurden. Die
bis dato entwickelte Mandantenlésung wurde in ein Modul {ibernommen, mit dem jeder
Administrator seine Instanz unter verschiedenen Hostnamen erreichbar machen kann.

Als weitere Herausforderung stellten sich einige Fehler in den verwendeten Softwa-
repaketen heraus. So hat der Autor der vorliegenden Arbeit drei Fehler in der OTRS
Version 2.2.3 aufgezeigt'?? und ein Fehlverhalten der Funktionsbibliothek SOAP::Lite
aufgezeigt®. Da die verwendeten Softwarepakete als Open Source verfiigbar sind und
die jeweiligen Projekte iiber Mailinglisten verfiigen, wurden diese Fehler entsprechend
veroffentlicht. Positiv fiel hierbei die Reaktionszeit der Entwickler auf. Eine Antwort
bzw. ein Losungsvorschlag war i.d.R. innerhalb von einigen Stunden oder wenigen Ta-
gen verfiigbar.

Diese Arbeit ist inhaltlich logisch strukturiert. Nach einer kurzen Erlduterung der zur
Verfiigung stehenden Hardware wird das verwendete Betriebssystem FreeBSD vorge-
stellt. Darauf aufbauend werden die eingesetzten Programme bzw. Dienste erortert. Da
ein grosser Teil dieser Arbeit auf der Programmierung eigener Module fiir das OTRS
beruht, folgt eine Darstellung der Programmiersprache Perl. Ausserdem wird das un-
ter unixartigen Betriebssystemen typische Shellscripting erklart. Den Abschluss dieser
Grundlagendiskussion bilden zwei Kapitel iiber die Auszeichnungssprache XML und des-

http://lists.otrs.org/pipermail/dev/2007-September/001709 . html

2http://lists.otrs.org/pipermail/dev/2007-September/001712.html

3http://lists.otrs.org/pipermail/dev/2007-September/001714.html

“http://sourceforge.net/mailarchive/message.php?msg name=C372633E.BICIBY25f jo-listsY
40ogris.de

11

http://lists.otrs.org/pipermail/dev/2007-September/001709.html
http://lists.otrs.org/pipermail/dev/2007-September/001712.html
http://lists.otrs.org/pipermail/dev/2007-September/001714.html
http://sourceforge.net/mailarchive/message.php?msg_name=C372633E.B9C9B%25fjo-lists%40ogris.de
http://sourceforge.net/mailarchive/message.php?msg_name=C372633E.B9C9B%25fjo-lists%40ogris.de

1 PROLOG

sen Ableitungen sowie die Datenbankabfragesprache SQL. Die Darstellung des OTRS in
Kapitel 8.1 erfolgt mehr aus der Sicht eines Administrators oder Programmierers denn
aus der eines Anwenders. Abschliessend werden die entwickelten Module prasentiert und
deren Programmierung in Ausziigen erklart.

12

2 HARDWARE

2. Hardware

2.1. Entwicklungssystem

Als Entwicklungssystem stand ein dlterer Server vom Typ Compaq Proliant DL360 (s.
Abbildung 1) zur Verfiigung. Er besitzt 2 Intel Pentium 3 CPUs mit je 866 MHz sowie

R ——
R it

S Ll | [

'f!fff!!!fﬂh:-

Abbildung 1: Compaq Proliant DL360 (Quelle: Hewlett Packard)

1 GB Arbeitsspeicher. Zwei SCSI-Festplatten mit einer Kapazitit von je 18,2 GB bilden
mittels eines RAID-Controllers einen Festplattenverbund im Level RAID-1, was den
Ausfall einer Festplatte ohne betriebliche Einbuflen oder Datenverlust verkraftet. Der
Server wurde per Firewall geschiitzt im internen Techniknetz der DTS Service GmbH
platziert. Als Hostname wurde fjo-otrs.dts-online.net vergeben.

2.2. Produktivsystem

Fiir die produktive Installation fiir OTRS wurde von der DTS Systeme GmbH ein Server
vom Typ Hewlett Packard Proliant DL360 G4 (s. Abbildung 2) bereitgestellt. Er verfiigt

Abbildung 2: HP Proliant DL360 G4 (Quelle: Hewlett Packard)

tiber 2 Intel Xeon Prozessoren mit je 3,6 GHz Taktfrequenz. Dies sind CPUs mit je 2
logischen Kernen pro physikalischem Prozessor (dual core). Als Hauptspeicher stehen 4
GB zur Verfiigung. Zwei 146 GB fassende SCSI-Festplatten sind wie beim Entwicklungs-
system per RAID-1 zu einem logischen Datentridger mit einer Nettokapazitéit von 146
GB verbunden. Ferner stehen zwei Ethernetschnittstellen mit einer Geschwindigkeit von
1 GBit/s bereit. Der Server wurde in einer demilitarisierten Zone (DMZ) platziert, so
dass zwar Schutz durch eine Firewall gegeben ist, jedoch der Zugriff aus dem Internet
per

e Email (SMTP per Transmission Control Protocol (TCP), Port 25)
e Web (HTTP per TCP, Port 80)

13

2 HARDWARE 2.2 Produktivsystem

e SSL geschiitztem Web (HTTPS per TCP, Port 443)

moglich ist.

14

3 BETRIEBSSYSTEM

3. Betriebssystem

3.1. Einfiihrung in FreeBSD

Das eingesetzte Betriebssystem FreeBSD in der Version 6.2 kann als Ur-Ur-Urenkel (vgl.

()) des 1969 von Ken Thompson und Dennis Ritchie entwickelten Unix
angesehen werden. Der Name FreeBSD setzt sich aus den Teilen free im Sinne von frei
von lizenzrechtlich geschiitztem Code und Berkeley Software Distribution (BSD) zusam-
men. Die damals zur US-amerikanischen American Telephone € Telegraph Corporation
(AT&T) gehorenden Bell Laboratories, unter dessen Obhut Thompson und Ritchie ih-
rerzeit Unix entwickelten, gab zwar den Sourcecode des Betriebssystems unentgeltlich
an Forschungseinrichtungen wie die University of California, Berkeley (UC Berkeley)
weiter, die entscheidende Entwicklungen wie den TCP/IP-Stack oder die Trennung des
Quellcodes in CPU-spezifische und generische Teile vornahmen, diese verbesserten Ver-
sionen von Unix aber nur weitergeben durften, wenn der jeweilige Interessent oder Her-
steller eine Lizenz von AT&T erwarb. Die Rechtsstreitigkeiten zwischen AT&T und der
UC Berkeley ergaben, dass aus dem Quellcode von BSD 3 von ca. 18000 Dateien ent-
fernt werden mussten und dass AT&T in die von BSD iibernommenen Codefragmente
"vergessene” Copyright-Hinweise wieder hinzufiigen musste. Aus der bereinigten Inte-
rimsversion 4.3BSD Lite ging im Dezember 1993 FreeBSD 1.0 hervor, welches seitdem
vom FreeBSD Project, einer Gruppe von freiwilligen Entwicklern, gepflegt und als Quell-
code frei zur Verfiigung gestellt wird. FreeBSD lduft vornehmlich auf der x86-Architektur
vom Intel 386 Prozessor bis zu aktuellen Pentium- und AMD Athlon-CPUs und auf
deren 64bittigen Nachfolgern wie neusten Intel Xeon- und AMD Opteron-CPUs, die
ob ihrer &hnlichen Befehlssdtze unter FreeBSD als amd64-Architektur zusammengefasst
sind. Ferner existieren Portierungen auf die UltraSPARC- und ARM-Architektur. Bis
auf den Betriebssystemkern, den Kernel, und systemnahe Programme existieren keine
Unterschiede zwischen den einzelnen Versionen, so dass sich ein FreeBSD 6.2 auf ei-
nem <eren Intel Pentium 3 genauso administrieren lidsst wie auf einem AMD Opteron.
FreeBSD zeichnet sich vor allem durch die folgenden Eigenschaften aus:

Stabilitat Laufzeiten (uptime) von mehreren hundert Tagen sind selbst bei belasteten
Systemen keine Seltenheit. Oftmals werden Systeme nur aufgrund von Hardwa-
refehlern, nach dem Einspielen sicherheitskritscher Updates oder physikalischer
Relokation neu gestartet oder heruntergefahren.

Kontinuitdat Ein FreeBSD-System verhélt sich iiber den Laufzeitraum wie vom Admi-
nistrator vorgegeben. Ein dynamisches Verhalten wie z.B. selbstdndiges Anpassen
von Konfigurationsparametern findet nicht statt.

Transparenz FreeBSD liegt vollsténdig als Quelltext vor und verfiigt iiber eine umfang-
reiche und gute Dokumentation (u.a. die sog. manpages), die vom Hilfsprogramm
bis zu internen Funktionen des Kernels reicht

Aktualitat FreeBSD kann entweder per vorkompilierter Programmpakete oder iiber das
Portssystem aktuell gehalten werden. Das Portssystem oder kurz die Ports stellen
eine Metadatenbank dar, die Regeln zum Herunterladen, Ubersetzen und Instal-
lieren von i.d.R. quelloffenen Programmen beinhalten. Obwohl dies grosstmogliche
Aktualitéit der jeweiligen Programme bedeutet, konnen Programme auch als fertige
Pakete eingespielt werden. Beide Arten (Ports und Pakete) konnen gleichzeitig auf
einem Rechner verwendet werden. Zudem koénnen aus den iiber das Portssystem
installierten Programmen eigene Pakete erstellt werden, um sie z.B. auf weiteren
lokalen Rechnern einzuspielen.

15

3 BETRIEBSSYSTEM 3.2 Installation

BSD-Lizenz FreeBSD unterliegt dem allgemeinhin als BSD-Lizenz bekannten Copy-
right. Anderungen am Quellcode oder an der Zusammensetzung der Programme
miissen nicht verdffentlicht werden, solange der Copyright-Hinweis® iibernommen
wird. Dies steht im Gegensatz zur General Public License (GPL), der z.B. Linux
und viele andere Opensource-Programme unterliegen. Ausgenommen von der BSD-
Lizenz sind jedoch Programme, die z.B. iiber das Portssystem eingespielt wurden,
aber einer anderen Lizenz unterliegen.

Flexibilitat Eine Minimalinstallation von FreeBSD benétigt ca. 140 MiB (Mebibyte;
1MiB = 2?9 Byte). Festplattenkapazitiit und 32 MiB Arbeitsspeicher und beinhal-
tet diverse kommandozeilenbasierte Programme wie

e cinen C-Compiler samt Linker und Assembler

die Secure Shell (SSH), eine sichere Methode zur entfernten Anmeldung

Client- und Serverprogramme fiir das File Transfer Protocol (FTP)

Sendmail zum Versenden und Empfangen von Emails iiber das Simple Mail
Transfer Protocol (SMTP)

diverse Hilfsprogramme zum Einrichten von Netzwerkschnittstellen, Forma-
tieren von Festplatten, usw.

Wegen der aufgezéhlten Griinde verwenden Internet Service Provider (ISP) neben Linux
bevorzugt FreeBSD.

3.2. Installation

FreeBSD wird i.d.R. per CD-ROM installiert. Hierfiir notige CD-Abbilder, sprich ISO-
Files, sind auf dem FTP-Server des FreeBSD-Projektes® oder einem Spiegel” zum Dow-
nload verfiighar. Alternativ kann die Installation komplett iiber das Netzwerk erfolgen.
Hierzu ist jedoch hardwareseitige Unterstiitzung der Netzwerkkarte sowie ein entspre-
chender Installationsserver notwendig. Daher wird meist per CD-ROM gebootet, und
dann entweder von jener CD das System aufgespielt oder aus dem Installationsmenii (s.
Abbildung 3) eine Netzwerkinstallation iiber FTP, Network File System (NFS), o.4.
ausgewahlt. Die eigentliche Installation &hnelt sehr der von anderen Betriebssystemen.
Unterschiede betreffen lediglich die Art der Partitionierung und die Moglichkeit, vorab
eine Paketauswahl zu treffen, um so z.B. keine grafische Oberfliche und keine Spie-
le zu installieren. FreeBSD verwendet eine herkommliche Festplattenpartition, die Sli-
ce genannt wird, und richtet erst innerhalb dieses Slices verschiedene Partitionen fiir
z.B. das Betriebssystem, die Nutzdaten und den Swapbereich ein. Andere Betriebs-
systeme sehen nur den Slice, nicht aber die in ihm enthaltenen Partitionen. Auf der
Entwicklungsmaschine wurde wegen des beschriankten Festplattenplatzes von 18,2 GB
(Gigabyte; 1GB = 10Byte) eine System- und Datenpartition von 15 GiB (Gibibyte;
1GiB = 23°Byte) und eine Swappartiton mit 2 GiB eingerichtet. Die Produktivmaschi-
ne verfiigt iiber 146 GB Nettokapazitdt. Daher wurde eine sogenannte Root-Partition
fir das Betriebssystem mit einer Grosse von 16 GiB eingerichtet. Die Swappartition
wurde mit 4 GiB so gross wie der verfiighare Hauptspeicher gewihlt. Der verbleibende
Festplattenplatz von 113 GiB wurde einer eigenen Partition fiir Nutzdaten zugewiesen
und unterhalb des Verzeichnisses /var eingebunden. Um die wiederkehrende Aufgabe

Shttp://www.freebsd.org/copyright/index.html
Sftp://ftp.freebsd.org/
"http://www.freebsd.org/doc/en_US.IS08859-1/books/handbook/mirrors-ftp.html

16

http://www.freebsd.org/copyright/index.html
ftp://ftp.freebsd.org/
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/mirrors-ftp.html

3 BETRIEBSSYSTEM 3.2 Installation

Helcome to the FreeBS5D installation and configuration tool. Please
select one of the options below by using the arrow keys or typing the
first character of the option name you’re interested in. Inwvoke an
option with [SPACE] or [ENTER]1. To exit, use [TAB] to move to Exit.

| Usage| Quick start - How to use this menu system

Begin a standard installation (recomHended)
Begin a quick installation (for experts)
Begin a custom installation (for experts)
Do post-install configuration of FreeBSD
Installation instructions, README, etc.
3elect keyboard type

UiewsSet warious installation options
Repair vode wWwith CDROM-DVD-floppy or start shell
Upgrade an existing system

Load default install configuration

Glossary of functions

[slelect 1] X Exit Install

Abbildung 3: Das Installationsmenii von FreeBSD

der Installation von FreeBSD auf einem neuen Rechner zu vereinfachen, hat der Au-
tor der vorliegenden Diplomarbeit im Januar 2006 ein nicht vercffentlichtes Skript- und
Konfigurationsbundle namens DTS-BSD begonnen, welches nach der Installation neuer
Systeme eine einheitliche Basiskonfiguration schreibt. Dies umfasst vor allem:

e Herabsetzen der Wartezeit des Bootloaders am Prompt zur Betriebssystemauswahl
e Setzen der lokalen Zeitzone auf Europe/Berlin

e Umleiten aller vom System generierten Statusemails an
hostmaster@dts-online.net

e Anpassen der zentralen Konfigurationsdatei /etc/rc.conf, so dass

ein deutsches Tastaturlayout geladen wird

— der SSH-Server zur sicheren Anmeldung auf diesem Server iiber das Netzwerk
gestartet wird

— der Systemlogdienst nur lokale Meldungen annimmt und nicht von anderen
Rechnern im Netzwerk

der Zeitserver gestartet wird, falls dieser installiert wurde

der Webserver (Apache) gestartet wird, falls dieser installiert wurde

— der Server fiir das Simple Network Management Protocol (SNMP) zur Uber-
wachung des Rechners gestartet wird, falls dieser installiert wurde

— der PortgreSQL-Datenbankserver gestartet wird, falls dieser installiert wurde

der MySQL-Datenbankserver gestartet wird, falls dieser installiert wurde

— zur vollstandigen Konfiguration nur noch Hostname, IP-Adresse und Default-
gateway eingetragen werden miissen

e Eintragen der Standarddomain dts-online.net und der beiden Nameserver in die
Datei /etc/resolv.conf

17

3 BETRIEBSSYSTEM 3.3 Starten von Systemdiensten

e Heraufsetzen von Kernelparametern in der Datei /etc/sysctl.conf zur Steige-
rung des Netzwerk- und Festplattendurchsatzes

e Anpassen der Konfigurationsdatei /etc/ssh/sshd_config, um dem Administrator
(root) die entfernte Anmeldung zu erméglichen

e Eintragen der Zeitserver ntpl.dts-online.net und ntp2.dts-online.net in die
Konfigurationsdatei /usr/local/etc/ntpd.conf des Zeitservers

e Eintragen des Servers cvsup.dts-online.net zur Aktualisierung des Systems in
die Dateien /usr/local/etc/cvsup-ports.conf und
/usr/local/etc/cvsup-src.conf

e Anpassen der Konfigurationsdatei /usr/local/etc/snmp/snmpd.conf des SNMP-
Dienstes

Zudem aktualisiert ein Skript das Portssystem und installiert dann vorab ausgewiéhlte
Programme.

3.3. Starten von Systemdiensten

Dienste wie z.B. der Systemlogserver (syslogd) oder ein Webserver werden beim Sy-
stemstart von Shellskripten (s. Kapitel 5.2) aktiviert. Diese sogenannten RC-Skripte
liegen im Verzeichnis /etc/rc.d, falls es sich um einen Dienst des Basissystems han-
delt, oder in /usr/local/etc/rc.d, falls es sich um einen iiber das Portssystem (oder
per Programmpaket) installierten Server handelt. Da das Starten, Stoppen, usw. eines
Dienstes oft gleichartige Schritte umfasst, wurden diese als separate Funktionen in der
Datei /etc/rc.subr zusammengefasst, welche jedes RC-Skript einbindet bzw. einbin-
den sollte. Ob und mit welchen Parametern ein Dienst gestartet werden sollte, muss in
der zentralen Konfigurationsdatei /etc/rc.conf hinterlegt werden. So muss dort z.B.
fiir den Webserver Apache in der Version 2.2 das Flag apache22 enable auf YES ge-
setzt werden. Etwaige Parameter werden in der Variablen apache22 flags iibergeben.
Soll der Webserver nicht mit den Rechten des Administrators root gestartet werden, so
muss in apache22 user der gewiinschte Benutzername stehen. Das Namensprefix (hier:
apache22) bestimmt jedes RC-Skript selbst, indem es eine Variable name entsprechend
initialisiert.

3.4. Portssystem

Das Portssystem wird i.d.R im Verzeichnis /usr/ports installiert. Es handelt sich dabei
vorwiegend um eine thematisch sortierte Sammlung von sogenannten Makefiles. Diese
Makefiles sind Textdateien, die Vorschriften zum automatischen Herunterladen, Uberset-
zen und Installieren von Softwarepakten enthalten. Makefiles werden {iblicherweise in der
modularen Programmierung eingesetzt, um beim erneuten Ubersetzen eines aus mehre-
ren Objekten bestehenden Programmes nur diejenigen zu kompilieren, deren zugrunde
liegender Quellcode gedndert wurde. Formal beschreibt ein Makefile, welche Schritte
notwendig sind, um aus einer Anzahl von Quelldateien eine oder mehrere Zieldateien zu
erhalten. Im Portssystem sind iiber 17000 Programme verfiigbar (Dezember 2007). Eine
Suchfunktion hilft, die gewiinschte Anwendung zu finden, z.B. den Webserver Apache
(s. Kapitel 4.1) in der Version 2.2. Hierfiir wechselt man zunéchst in das Verzeichnis
/usr/ports und setzt den Befehl make search key=<Suchwort> ab:

$ c¢d /usr/ports
$ make search key=apache22

18

3 BETRIEBSSYSTEM 3.4 Portssystem

Man erhélt eine Ausgabe wie in Abbildung 4. Neben den Angaben, welche genaue Version

]

M0 %/ xterm

[root®fjo—otrs “1# cd Afusr/portsd

[rootlf jo—otrs Ausrdports]# make search key=apache2?

Port: apache-2.2.6_3

Path: Ausrdportzdwewdapachez?

Info: Version 2.2 of Apache web server with prefork HPH.

Haint: clementiFreeBSh,org

B-deps: autoconf-2,61_2 autoconf-wrapper-20071109 expat-2.0,0_1 libiconw-1,11_1
libtool-1.5,24 md-1,4.9.1 perl-5,8,8_1

F-deps: expat-2,0,0_1 libiconw-1,11_1 perl-5,8,8_1

111[1fs http:sfhttpd, apache, orgs

[rootBf jo-otrs Ausriports]é]
Abbildung 4: Die Suche nach einem Programm im Portssystem

der Software verfiigbar ist und welche Pakete zum Ubersetzen (B-deps) bzw. zum Betrieb
(R-deps) notwendig sind, ist vor allem das lokale Verzeichnis (Path) wichtig, in dem sich
die gewiinschte Anwendung befindet (hier: /usr/ports/www/apache22). Man wechselt
in jenes Verzeichnis (cd /usr/port/www/apache22) und setzt den Befehl make install
clean ab, um das Softwarepaket zu installieren und um anschliessend alle wihrend des
Kompilierens erzeugten Dateien zu 16schen. Das Portssystem wird alle benttigten Pakete
(B-deps, R-deps) automatisch installieren, sofern sie noch nicht im System vorhanden
sind. Wird ein Port zum allerersten Mal installiert und bietet er verschiedene Optio-
nen zur Installation an wie z.B. Optimierungsflags oder zuséitzliche Module, so wird
dem Administrator ein entsprechendes Auswahlmenii prasentiert. Manuell lasst sich ein
derartiges Optionsmenii per make config im Verzeichnis des entsprechenden Paketes
aufrufen.

19

4 ANWENDUNGSPROGRAMME

4. Anwendungsprogramme

4.1. Apache
4.1.1. Einleitung

Der Webserver Apache ist eine von der Apache Software Foundation® im Quellcode zur
Verfiigung gestellte Serversoftware. Ublicherweise wird er verwendet, um Dateien per
Hypertext Transfer Protocol (HTTP) auszugeben, welches allgemeinhin die Grundlage

des World Wide Web (WWW) bildet. Er ist modular aufgebaut. Zum Standardumfang
gehoren vor allem Module, die

e die sichere Variante HT'TPS des Hypertext Transport Protocols implementieren

e die Generierung von Webseiten per externer Programme ermdoglichen (das soge-
nannte Common Gateway Interface (CGI)

e den Betrieb des Servers als Proxy fiir HI'TP und FTP erlauben.

4.1.2. Installation

Der Apache Webserver wurde iiber das Portssystem installiert (s. Abbildung 5). Hierbei

]

806 X xterm

Optionz for apache 2,.2.6_3

Enable mod_unigue_id
Enable mod_userdir
Enable mod_usertrack
Enable mod_vhoszt_alias
Enable mod_filter

Enable mod_verszion
Enable mod_proxy

Enable mod_proxy_connect
Enable mod_proxy_ftp
Enable mod_proxy_http
Enable mod_proxy_ajp
Enable mod_proxy_balancer
Enable mod_ssl

Enable mod_cgid

I 1K 1 Cancel

[T S T A A A S I "'

u
u
u
¥
F
¥
P
P
P
P
P
P
5
C

|

Abbildung 5: Das Optionsmenii zur Installation des Apache Webservers

wurden neben der Defaultauswahl die folgenden Module installiert:
mod_proxy Dieses Modul stellt allgemeine Proxyfunktionen bereit.

mod_proxy_http Dieses Modul stellt Proxyfunktionen fiir das Hypertext Transfer Pro-
tocol bereit.

8http://www.apache.org

20

http://www.apache.org

4 ANWENDUNGSPROGRAMME 4.1 Apache

mod_ssl Dieses Modul ermdoglicht den Einsatz von HTTPS, der sicheren Variante des
Hypertext Transfer Protocols.

Die Module mod_dav und mod_dav_fs, welche das HT'TP-basierte Verfahren Distributed
Authoring and Versioning (DAV) zum Bearbeiten von Dateien auf einem Webserver
implementieren, wurden aus Sicherheits- und Performancegriinden abgewéhlt.

4.1.3. Konfiguration

Damit der Apache beim Booten des Systems gestartet wird, muss in der Datei
/etc/rc.conf folgender Eintrag gesetzt sein:

apache22_enable="YES"

FreeBSD verfiigt iiber einen Filter, der neue Verbindungen nur dann an eine Anwendung
signalisiert, wenn der Kernel eine giiltige HTTP-Anfrage erkannt hat. Da dies die Anzahl
der Kontextwechsel zwischen Kernel- und Userspace mindert, wurde die /etc/rc.conf
um folgende Option erweitert:

apache22_http_accept_enable="YES"

Standardméssig stellt die Datei /usr/local/etc/apache22/httpd. conf die Konfigura-
tion des Apache dar. Auf der Entwicklungsmaschine (s. Kapitel 2.1) wurde diese bis zum
Einsatz des Moduls DTSMaster (s. Kapitel 9.6) verwendet. Auf der Produktivmaschine
hingegen werden automatisch generierte Webserverkonfigurationen verwendet. Tabelle 1
erlautert die wichtigsten Parameter einer Konfigurationsdatei fiir den Apache.

Tabelle 1: Ausgewihlte Konfigurationsparameter des Apache Webservers

Parameter Beschreibung

ServerRoot VERZEICHNIS legt das Stammverzeichnis des Servers fest;
alle relativen Pfadangaben beziehen sich
hierauf

User NAME weist den Apache an, nach dem Start mit

den Rechten des (unprivilegierten) Benut-
zers NAME zu arbeiten

Group NAME weist den Apache an, nach dem Start mit
den Rechten der (unprivilegierten) Gruppe
NAME zu arbeiten

LoadModule NAME MODUL ladt das Modul mit dem Namen NAME aus
der Bibliothek MODUL
AcceptMutex TYPE Apache kreiert beim Start mehrere Ar-

beitsprozesse, die beim Zustandekommen ei-
ner neuen Clientverbindung serialisiert wer-
den miissen, damit nur ein Arbeitsprozess
den neuen Client bedient; iiblich ist der Typ
sysvsem, der einen Semaphore als Mutex
verwendet

Listen ADRESSE gibt die IP-Adresse und optional die Port-
nummer an, auf der der Apache Verbindun-
gen akzeptiert; als Wildcard fiir alle Adres-
sen des Systems kann ein Stern * verwendet
werden

21

4 ANWENDUNGSPROGRAMME

4.1 Apache

Tabelle 1: Ausgewiihlte Konfigurationsparameter des Apache Webservers (Forts.)

Parameter

Beschreibung

NameVirtualHost ADRESSE

das Hypertext Transfer Protocol ermdglicht
es, dass ein Server mehrere, anhand ihrer
Hostnamen unterschiedene Webauftritte be-
herbergt; jener Parameter gibt an, auf wel-
chen Netzwerkschnittstellen der Apache die-
ses Verhalten unterstiitzt

ServerAdmin EMAIL

gibt die Emailadresse des Administrators
an, die z.B. auf Fehlerseiten angegeben wird

PidFile DATEI

gibt an, in welcher Datei die Prozessnummer
des Servers gespeichert werden soll, damit
z.B. die RC-Skripte des Betriebssystems den
Apachen stoppen koénnen

ErrorLog DATET

spezifiert die Datei, in der Fehlermeldungen
protokolliert werden

CustomLog DATEI FORMAT

gibt an, in welcher Datei und mit wel-
chen Format Zugriffe protokolliert werden;
hierfiir muss das Modul log_config module
aus der Bibliothek mod_log_config.so gela-
den worden sein

<VirtualHost ADRESSE>

leitet einen Abschnitt fiir einen anhand
des Hostnamen unterschiedenen Webauftritt
ein; dieser muss mit </VirtualHost> wieder
geschlossen werden

ServerName HOSTNAME

gibt den Namen eines VirtualHost an

DocumentRoot VERZEICHNIS

gibt das Wurzelverzeichnis fiir einen Virtual-
Host an; per default werden abgerufene Da-
teien aus diesem Verzeichnis ausgeliefert

RedirectPermanent URL1 URLZ2

Anfragen von Clients nach Dokumenten un-
ter dem Pfad URL1 werden zum Pfad
URL2 weitergeleitet; hierfiir muss das
Modul alias module aus der Bibliothek
mod_alias.so geladen worden sein

<LocationMatch REGEX>

leitet einen Abschnitt fiir Anfragen nach Do-
kumenten, auf deren Pfad der reguldre Aus-
druck REGEX zutrifft, ein; innerhalb ei-
nes solchen Abschnittes kénnen gesonder-
te Regeln definiert werden; ein solcher Ab-
schnitt muss per </LocationMatch> wieder
geschlossen werden

22

4 ANWENDUNGSPROGRAMME 4.1 Apache

Tabelle 1: Ausgewiihlte Konfigurationsparameter des Apache Webservers (Forts.)

Parameter Beschreibung

ProxyPass URL HOSTNAME Anfragen nach Dokumenten unterhalb des
Pfades URL werden an den Rechner mit
dem Namen HOSTNAME durchgeleitet;
hierfiir miissen die Module proxy_module
aus der Bibliothek mod_proxy.so und — falls
der entfernte Rechner per HT'TP angespro-
chen werden soll — proxy_http_module aus
mod_proxy_http.so geladen worden sein
SSLEngine On gibt an, dass Dokumente per HTTPS
geschiitzt iibertragen werden sollen; hierfiir
muss das Modul ss1_module aus der Biblio-
thek mod_ssl geladen worden sein
SSLCertificateFile DATETI gibt den Pfad zum SSL-Zertifikat an
SSLCertificateKeyFile DATEI gibt den Pfad zum SSL-Schliissel an

4.1.4. mod_perl2

Aktuelle Webserver ermoglichen es, Webseiten und andere Inhalte dynamisch zu gene-
rieren. Hierzu wird ein externes Programm oder Skript aufgerufen, das z.B. Anfragen an
eine Datenbank stellt und diese Daten dem Besucher bzw. Client darstellt. Ein solches
Programm kann in nahezu jeder Programmiersprache erstellt werden. Es muss lediglich
in der Lage sein,

e ctwaige libergebene Parameter auf der Standardeingabe lesen zu kénnen

e Hilfswerte wie z.B. die IP-Adresse des Clients als Umgebungsvariable (environ-
ment) einlesen zu kénnen

e den dynamisch erzeugten Inhalt, z.B. eine Webseite, aber auch ein Bild, per Stan-
dardausgabe an den Webserver zuriickliefern zu kénnen.

FEine typische Anwendung ist z.B. ein Géstebuch, bei dem der Besucher zunéchst in ei-
ne statische Webseite seinen Namen, seine Emailadresse und einen Kommentar eingibt.
Per Mausklick auf einen meist mit Absenden oder Eintragen betitelten Knopf werden
die Werte an eine dynamische Webseite gesendet, hinter der sich ein externes Programm
verbirgt. Dieses nimmt die Daten des Besuchers entgegen und speichert sie i.d.R. zusam-
men mit Datum und der [P-Adresse des Clients in einer Datenbank ab. Dieses Common
Gateway Interface, oder kurz CGI genannte Verfahren ist zwar flexibel, beim Einsatz
einer interpretierten Sprache wie Perl jedoch muss der Webserver bei jedem Aufruf den
Perlinterpreter aufrufen. Dieser parst und kompiliert zunéchst das gewiinschte Skript
und evtl. zusédtzliche Module. Anschliessend kann dieses Skript mit der eigentlichen Auf-
gabe beginnen, z.B. eine Datenbank befragen und die Ausgabe generieren. Diese Schritte
sind zum einen sehr aufwendig und zum anderen redundant, da die Anzahl der Websei-
tenaufrufe auf einem produktiven Server i.d.R. die Haufigkeit von Anderungen an der
Perlinstallation oder an den CGI-Skripten iibersteigt. Daher wird der Perlinterpreter in
den Webserver geladen. Das Modul mod_perl bzw. dessen Nachfolger mod_perl2 sind als
eigene Pakete im Portssystem von FreeBSD verfiigbar. Die Installation von mod_peri2
ist relativ einfach:

23

4 ANWENDUNGSPROGRAMME 4.1 Apache

$ cd /usr/ports/www/mod_perl2
$ make install clean

Die Konfigurationsdatei des Webservers muss um folgende Zeile ergénzt werden:
LoadModule perl_module libexec/apache22/mod_perl.so

Die relative Pfadangabe libexec/apache22/mod _perl.so setzt voraus, dass der Para-
meter ServerRoot als /usr/local konfiguriert ist. Damit Perlskripte nicht vom (exter-
nen) Interpreter ausgefiihrt werden, sondern von mod_perl2, verwendet man die Anwei-
sung SetHandler perl-script, z.B. innerhalb eines per <LocationMatch> definierten
Abschnittes:

LoadModule perl_module libexec/apache22/mod_perl.so
<VirtualHost *>

ServerName www.fh-bielefeld.de

DocumentRoot /var/wuw/wuw.fh-bielefeld.de

<LocationMatch ~/gaestebuch/>

SetHandler perl-script

</LocationMatch>

</VirtualHost>

Ruft ein Besucher in seinem Browser z.B. die URL
http://www.fh-bielefeld.de/gaestebuch/script.pl auf, so wird der Webserver die
lokale Datei /var/www/www.fh-bielefeld.de/gaestebuch/script.pl per mod_peri2
ausfithren. Kapselt man ein Skript als Perlmodul, so kann dieses Modul beim Starten
des Webservers von mod_perl2 interpretiert und als kompilierter Bytecode im Speicher
gehalten werden. Ein solches Modul muss wie folgt strukturiert sein:

#!/usr/bin/perl
package FHBielefeld :: Gaestebuch;

sub handler ()
{

}

ehemaliger Skriptcode ...

evtl. lokale Subroutinen ...

erfolgreiches FEinbinden melden
1.

)

Der Name des Package ist frei wéhlbar, darf aber nicht mit anderen Paketen kollidie-
ren und sollte generell passend zur Anwendung gewahlt werden. Das eigentliche Skript
bzw. dessen Code auf der Hauptebene muss in eine Funktion namens handler ko-
piert werden. In der Konfiguration des Webservers muss der Name des Packages als
PerlResponseHandler hinterlegt werden:

<LocationMatch ~/gaestebuch/>

SetHandler perl-script

Per1ResponseHandler FHBielefeld: :Gaestebuch

PerlOptions +SetupEnv
</LocationMatch>

Somit wird der Apache Anfragen nach jeglichen Dokumenten, deren URL mit
http://www.fh-bielefeld.de/gaestebuch/ beginnt, an die Funktion handler im

24

4 ANWENDUNGSPROGRAMME 4.2 PostgreSQL

Package FHBielefeld: : Gaestebuch weitergeben. Ist wie im Beispiel die zusétzliche Op-
tion +SetupEnv gesetzt, so kann im Package auf den Hash %ENV zugegriffen werden, der
z.B. unter dem Schliissel $ENV{REQUEST_URI} den Pfad des urspriinglich gewiinschten
Dokumentes beinhaltet. Ruft ein Besucher die Seite
http://www.fh-bielefeld.de/gaestebuch/script.pl auf, ist in $ENV{REQUEST_URI}
der String /gaestebuch/script.pl hinterlegt. Mit der Anweisung PerlSetVar kénnen
der Funktion handler zusétzliche Optionen iibergeben werden:

<LocationMatch ~/gaestebuch/>

SetHandler perl-script

PerlResponseHandler FHBielefeld: :Gaestebuch

Per10ptions +SetupEnv

PerlSetVar Ausgabe hello, world
</LocationMatch>

Die Funktion handler bekommt als einzigen Parameter eine Instanz der Klasse
Apache2: :RequestRec iibergeben, welche von Apache2: :RequestUtil erbt. Die Mem-
berfunktion dir_config der Klasse Apache2::RequestUtil wird genutzt, um die per
PerlSetVar definierten Optionen abzufragen:

#!/usr/bin/perl
package FHBielefeld :: Gaestebuch;

sub handler ()

my $Request
my $Ausgabe

shift ;
$Request—>dir_config (” Ausgabe”);

}

Der Scalar $Ausgabe enthélt nun den String hello, world, wie in der Konfiguration des
Webservers definiert. Damit beim Starten von Apache alle verwendeten Perlmodule ge-
laden werden, verwendet man den Parameter PerlRequire gefolgt von einer Pfadangabe
zu einem Perlskript:

PerlRequire /usr/local/etc/preload.pl

Das Skript preload.pl muss lediglich alle verwendeten Module per use laden. Durch
den Einsatz von mod_perl werden sie in kompilierter Form im Speicher gehalten.

4.2. PostgreSQL
4.2.1. Einleitung

Der Datenbankserver PostgreSQL ist eine Weiterentwicklung des POSTGRES Projek-
tes. Dieses wurde im Jahre 1986 an der UC Berkeley initiiert und stellte ein Modell
zur objekt-relationalen Datenhaltung dar. Es verfiigte iiber eine eigene Abfragesprache
namens PostQUFEL, deren Semantik an die heute iibliche Structured Query Language
(SQL) erinnert. PostgreSQL verwendet jedoch ausschliesslich SQL als Abfragesprache
(s. Kapitel 7.1). PostgreSQL hélt Daten in Datenbanken vor, die wiederum sogenannte
Relationen beinhalten. Die Menge aller Datenbanken wird im PostgreSQL-Umfeld Da-
tenbankcluster genannt. Ein Datenbankserver verfiigt i.d.R. {iber genau einen solchen
Cluster und stellt fiir jede Anwendung eine eigene Datenbank bereit. Analog werden Re-
lationen so modelliert, dass sie moglichst ein Abbild real existierender Datensammlungen

25

4 ANWENDUNGSPROGRAMME 4.2 PostgreSQL

entsprechen. Bildlich hat sich fiir eine Relation der Begriff Tabelle durchgesetzt. So kann
z.B. die Relation Person je nach Anwendungszweck die Attribute Vorname und Nachname
umfassen. Die Datenhaltung erfolgt dann in einer Tabelle mit dem Namen Person oder
auch Personen. Die Spalten dieser Tabelle haben dann die Bezeichnung Vorname und
Nachname. Jeder Reihe dieser Tabelle stellt dann eine Person dar. Die Spalten miissen
zudem von einem bestimmten Datentyp sein, hier z.B. bieten sich zwei Zeichenketten
an. PostgreSQL ermoglicht es, dass Tabellen im Sinne der objektorientieren Program-
mierung voneinander erben. Die Tabelle Mitarbeiter kénnte z.B. von Person erben, so
dass Mitarbeiter Vor- und Nachnamen haben (Attributvererbung) und dass jeder Mit-
arbeiter automatisch eine Person ist (Typvererbung). Die physikalische Speicherung der
Daten erfolgt in bindren Dateien. PostgreSQL schreibt verinderte Daten jedoch nicht
unmittelbar in den eigentlichen Datenbereich, sondern zunéchst in ein sequentielles Log-
file. Dieses Write Ahead Logging (WAL) genannte Verfahren bietet zwei Vorteile. Zum
einen ist sequentielles Schreiben in eine Datei schneller als wahlfreier Zugriff innerhalb
einer Datei. Zum anderen kann somit relativ einfach ein Spiegel der Datenbank betrie-
ben werden. Der Zugriff auf die Daten erfolgt i.d.R iiber ein Netzwerk mittels bindrem
Protokoll. Clientbibliotheken sind fiir Sprachen wie Perl, PHP, C, u.v.m. verfiigbar.

4.2.2. Installation

Die Installation von PostgreSQL gestaltet sich unter FreeBSD aufgrund des Portssystems
sehr einfach:

$ cd /usr/ports/databases/postgresql82—server
$ make config install clean

806 %] xterm

Dptions for postgresgl-serwer 8,2,5_2

Uze internationalized messages

Build with PAM support (zerver only)
Build with LDAF authentication support
Build with MIT's kerberos support

Builds with Heimdal kerberos support
Builds with compiler cptimizations (-03)
Link w/ libc_r, used by plputhon [zerver)
make libpg thread safe

Allows the use of a check target (zerver)
Builds with debugging symbols

Builds with guery hierarchy (server)
Builds with fd-hit date/time tupe (=erver)

el e e T T T T T T T |
=
[T S Y S N T Y S N S) T |

N
F
L
H
H
0
L
T
T
D
H
[NTDATE

=

I 1K 1 Cancel

Abbildung 6: Das Optionsmenii zur Installation des PostgreSQL Datenbankservers

Im Optionsdialog (s. Abbildung 6) wurden lediglich die Parameter OPTIMIZED_CFLAGS
und INTDATE ausgewihlt. Ersterer iibersetzt den Server mit dem Compilerflag -03, wel-
ches zugunsten der Ausfithrungsgeschwindigkeit grosseren Code erzeugt. Der Parameter

26

4 ANWENDUNGSPROGRAMME 4.2 PostgreSQL

INTDATE bewirkt, dass der PostgreSQL-Server fiir Datum- und Zeitwerte 8 Byte grosse
Integerwerte statt FlieBkommazahlen verwendet. Dies schrankt zwar den absoluten Be-
reich darstellbarer Daten von einem Zeitraum zwischen 4713 v.Chr. und 5874897 n.Chr.
auf einen Zeitraum zwischen 4713 v.Chr. und 294276 n.Chr. ein, garantiert jedoch ei-
ne Auflésung von einer Mikrosekunde iiber den gesamten Zeitraum. Ausserdem wird in

()Y darauf hingewiesen, dass im FlieBkommacode noch immer Fehler ge-
funden werden. Vor dem ersten Start des PostgreSQL-Servers wurden in der zentralen
Konfigurationsdatei /etc/rc.conf folgende Variablen gesetzt:

postgresql_enable="YES"
postgresql_data="/var/db/pgsql/data"

Der Parameter postgresql_data gibt das Verzeichnis an, in dem die Dateien der Da-
tenbank gespeichert werden. Auf dem Produktionsserver ist diese Angabe wichtig, da
der unter /var eingebundenen Partition der meiste Speicherplatz zugewiesen wurde.
Per Aufruf von /usr/local/etc/rc.d/postgresql start wird der Datenserver ma-
nuell gestartet. Existiert das Datenverzeichnis /var/db/pgsql/data noch nicht, so legt
es das Startskript automatisch an und initialisiert den Datenbankserver per Aufruf des
Programmes initdb.

4.2.3. Konfiguration

Per default ist fiir den Administrationsbenutzer pgsql des PostgreSQL-Servers kein
Passwort vergeben. Dieses kann mit dem Kommandozeilenprogramm psql vergeben
werden. Hierzu verbindet man sich lokal auf die durch die Installation angelegte Testda-
tenbank postgres und vergibt mit dem SQL-Befehl ALTER USER ein Passwort fiir den
Benutzer pgsql. Die einzelnen Schritte zeigt Abbildung 7. Die Textdatei

'6 06 | xterm

[root®fjo—otrs “1# psgl postores pgsql
Welcome to psgl 8.2.5 (server 8,2.4), the PostgreSOL interactive terminal,

Type: ‘“copyright for distribution terms
“h for help with SO0 commands
¢ for help with psql commands
g o terminate with semicolon to execute query
“q to guit

postores=# ALTER USER pgsgl PASSWORD ‘streng_geheim' *
ALTER ROLE
postgres=#]

Abbildung 7: Passwortdnderung fiir den Administrator des PostgreSQL Datenbankser-
vers

/var/db/pgsql/data/pg-hba.conf stellt einen Filter dar, der Benutzern Verbindungen
auf die Datenbank gestattet oder verwehrt. Die Datei besteht aus 5 per Whitespace
getrennten Spalten. Jede Zeile beschreibt eine Zugriffserlaubnis:

host db1l userl 10.0.0.0/8 md5

“http://wuw.postgresql.org/docs/8.2/static/install-procedure.html

27

http://www.postgresql.org/docs/8.2/static/install-procedure.html

4 ANWENDUNGSPROGRAMME 4.2 PostgreSQL

Diese Zeile gibt dem Benutzer user1 Zugriff auf die Datenbank db1, wenn die Verbindung
vom einem Rechner aus dem IP-Netz 10.0.0.0/8 kommt und eine Passwortauthentifizie-
rung per MD5-Hash stattfindet. Statt expliziter Datenbank- und/oder Benutzernamen
kann der Wildcard all verwendet werden:

host all all 10.0.0.0/8 md5

Somit wird allen Benutzern Zugriff auf jede Datenbank gestattet, wenn sie aus dem
Netz 10.0.0.0/8 kommen und sich per MD5-Hash authentifizieren. Obwohl eine Anmel-
dung per MD5-Schliissel sehr sicher ist, existieren ferner die Authentifizierungsmethoden
trust, welche kein Passwort verlangt, und password, welche ein Klartextpassword er-
wartet. Verwendet man local statt des Schliisselwortes host, so definiert man Zugriffs-
rechte fiir Benutzer, die sich lokal iiber einen Uniz-Socket auf die Datenbank verbinden
mochten. Die Angabe eines IP-Netzes oder einer IP-Adresse ist hierbei auszulassen:

local all all md5

Diese Zeile gestattet allen Benutzern, die sich erfolgreich per MD5-Hash authentifi-
ziert haben, Zugriff auf jede Datenbank, sofern die Verbindung lokal erfolgt. Die Da-
tei pg-hba.conf definiert lediglich Verbindungsrechte. Jeder Datenbank ist eine Liste
zugeordnet, die einzelnen Benutzern entsprechende Rechte zum eigentlichen Auslesen
und Bearbeiten der Daten gestattet. Diese Liste wird mit dem SQL-Kommando GRANT
modifiziert (s. Kapitel 7.1). Soll dem Benutzer otrsl nur Zugriff auf die Datenbank
otrsl, dem Benutzer otrs2 nur Zugriff auf otrs2, usw. gegeben werden, kann fiir den
Datenbanknamen der Bezeichner sameuser verwendet werden:

local sameuser all md5
Der Administrator pgsql soll natiirlich weiterhin auf alle Datenbanken zugreifen diirfen:

local all pgsql mdb
local sameuser all md5

Da Datenbanknamen und Benutzernamen der einzelnen OTRS-Instanzen i.d.R. gleich-
lautend sind, wurde auf dem Entwicklungs- und dem Produktionsserver die oben gezeigte
Konfiguration in die Datei pg_hba.conf iibernommen. Die Textdatei
/var/db/pgsql/data/postgresql.conf stellt die Hauptkonfiguration des PostgreSQL-
Servers dar. Sie wurde um die folgenden Parameter erweitert bzw. entsprechend ange-
passt:

log_destination = ’syslog’ leitet alle Logausgaben der Datenbank an den System-
logdienst weiter

autovacuum = on startet einen internen Hilfsprozess, der die Datenbank bereinigt und
nicht belegten Speicherplatz freigibt; hierfiir miissen ferner die Optionen
stats_block_level = on und stats_row_level = on aktiviert sein.

Damit die Meldungen des PostgreSQL-Servers vom Systemlogdienst in die separate Datei
/var/log/pgsql.log geschrieben werden, wurde die Konfigurationsdatei
/etc/syslog.conf um folgende Zeile erweitert:

localO.* /var/log/pgsql.log

28

4 ANWENDUNGSPROGRAMME 4.3 Postfix

4.3. Postfix
4.3.1. Einleitung

Auf einem FreeBSD-System ist per default sendmail installiert. Dies ist ein sogenannter
Mail Transfer Agent (MTA), der fiir die Annahme, das Routing und die Weiterleitung
von Emails zustindig ist. Weil sendmail eine auffillige (Un-)Sicherheitshistorie'’ vorzu-
weisen hat, verarbeitet es unter FreeBSD standardméssig nur Emails, die von lokalen
Benutzern des Systems versendet werden. Es akzeptiert keine per Netzwerk eingelieferten
Emails. Obschon ein- als auch ausgehende Emails iiber separate, von der DTS Service
betreute und daher aus Sicht interner Systeme vertrauenswiirdige Mailserver geleitet
werden konnen, wurde sendmail deaktiviert und durch Postfiz ersetzt. Postfix wurde
von Wietse Venema als sichere Alternative zu sendmail entwickelt. Wahrend sendmail
ein monolithisches Programm ist, besteht Postfix aus mehreren Teilen, die mit unter-
schiedlichen Benutzerrechten laufen und iiber definierte Schnittstellen miteinander kom-
munizieren. Dennoch wird Postfix zentral mittels einiger Textdateien konfiguriert. Im
Gegensatz zu sendmail sind diese Konfigurationsdateien verstédndlicher und gut struktu-
riert. Da pro Maschine mehrere OTRS-Instanzen mit unterschiedlichen Benutzerrechten
laufen, muss das jeweilige Perlskript, welches Emails in die Datenbank {ibernimmt, eben-
falls mit den Rechten des entsprechenden Benutzers ausgefiihrt werden. In Postfix wird
dies mit 3 trivialen Textzeilen erreicht. Mit sendmail wiirde dies entweder die manuelle
Bearbeitung der sendmail.cf, der zentralen und komplexen Konfigurationsdatei, oder
die Erweiterung des Préprozessors bedeuten, welcher die sendmail.cf erzeugt.

4.3.2. Installation

Die Metadaten zum Installieren von Postfix iiber das Portssystem liegen im Verzeich-
nis /usr/ports/mail/postfix. Nach dem Wechsel dorthin ruft man den Befehl make
config install clean auf, um den Optionsdialog aufzurufen, Postfix zu installieren,
und um temporire Dateien nach der Kompilierung zu 16schen. Im Optionsdialog (s. Ab-
bildung 8) sind alle Parameter abzuwéhlen. Postfix kann verschiedene SQL-Datenbanken,
Lightweight Directory Access Protocol (LDAP)-Verzeichnisse

und In-Memory-Datenbanken abfragen, um so Routinggentscheidungen fiir Emails zu
treffen. Diese Moglichkeiten werden nicht benétigt. Als Datenquelle werden auf dem
OTRS-Server automatisch erzeugte Hashdateien verwendet, die von einem Perlskript
angelegt werden. Die Unterstiitzung fiir derartige Hashdateien gehort zum Standardum-
fang von Postfix.

4.3.3. Konfiguration

Noch wihrend der Installation wird der Administrator gefragt, ob Postfix als Standard-
mailserver des Systems in die Datei /etc/mail/mailer.conf eingetragen werden soll.
Dies ist zu bejahen. Nach der Installation wird sendmail per Aufruf von
/etc/rc.d/sendmail stop beendet. Anschliessend muss die zentrale Konfigurationsda-
tei /etc/rc.conf des FreeBSD-Systems angepasst werden:

sendmail _enable="NONE"
postfix_enable="YES"

Somit wird beim Systemstart nicht mehr sendmail, sondern Postfix aktiviert. Manu-
ell kann man Postfix per Aufruf von /usr/local/etc/rc.d/postfix starten, stoppen

105 a. http://cr.yp.to/maildisasters/sendmail .html

29

http://cr.yp.to/maildisasters/sendmail.html

4 ANWENDUNGSPROGRAMME 4.3 Postfix

806 % xterm

Qptions for postfix 2.4.6.1

Perl Compatible Regular Expressions

Cyruzs SASLY? (Simple Auth, and Sec, Laysr)

Dlovecot SASL authentication method

If your SASL req, Kerberoz select thiz option

If your SASL req, Kerberosh select thiz option

If your SASL req, MIT kerberosS select this option
Enable 550 and TLS support

Berkeley IE {chooze wersion with WITH_BDE_WER])
MySOL maps (chooze wersion with WITH_MYSOL_YER)
PostgreSL maps (choose with DEFAULT_PGSOL_YER)
OpenlLDAP maps (choose wer, with WITH_OPEMLDAP_VER)
CIE mapz lookups

NIS mapz lookups

YDA (Mirtual Delivery Agent)

I 1K 1 Cancel

[T T T ST T)) Y "

F
5
D
5
5
5
T
B
H
P
0
C
N
v
| EST

Abbildung 8: Das Optionsmenii zur Installation des Postfix Mailservers

oder zum erneuten Einlesen seiner Konfiguration veranlassen, wenn man den Parameter
start, stop respektive reload verwendet. Die Konfigurationsdateien liegen im Ver-
zeichnis /usr/local/etc/postfix. Die Datei master.cf definiert alle innerhalb des
Mailservers verfiigharen Dienste. Jede Zeile besteht aus 8, per Whitespace getrennten
Spalten und stellt einen Service dar, z.B.:

smtp inet n - n - - smtpd
Die einzelnen Felder haben folgende Bedeutung:

1. Name (smtp) Das erste Feld definiert den frei wéhlbaren Namen des Services. Der
Name zusammen mit dem Typ (s.u.) miissen eindeutig sein.

2. Typ (inet) Das zweite Feld definiert den Typ des Services. Der Wert inet gibt an,
dass dieser Dienst bzw. das Programm (s. Punkt 8.) so gestartet werden soll, dass
er iiber das Netzwerk konnektierbar ist. Der Wert unix gibt an, dass dieser Dienst
so gestartet werden soll, dass er nur per lokalem Unix-Socket angesprochen werden
kann.

3. Privatflag (n) Das dritte Feld akzeptiert nur die boolschen Werte n fiir no, y fiir yes
oder - fiir den Defaultwert. Es gibt an, ob der Zugriff auf diesen Dienst nur durch
Postfix selbst gestattet sein soll. Fiir Dienste vom Typ inet muss hier n angegeben
werden. Der Standardwert (=) ist gleichbedeutend mit y.

4. Privilegflag (-) Das vierte Feld ist ebenfalls ein boolsches Feld. Der Defaultwert ist
y und gibt an, dass der Dienst nicht mit den Rechten des Administrators root
arbeiten darf.

30

4 ANWENDUNGSPROGRAMME 4.3 Postfix

(&4

. Chroot-Flag (n) Das fiinfte Feld bestimmt, ob der Dienst in einer vom restlichen
System abgeschotteten Umgebung, einer sogenannten Chroot-Umgebung, laufen
soll. Der Standardwert ist y.

[=)]

. Interval (=) Das sechste Feld gibt die Zeit in Sekunden an, nach der ein Dienst erneut
gestartet wird. Der Standardwert von 0 kann wie bei boolschen Feldern (s.o.) per -
referenziert werden. Ein Zeitwert von null Sekunden deaktiviert das erneute Starten
eines Services. Das Feld wird i.d.R. nur fiir einige interne Postfixprozesse gesetzt,
z.B. fiir den Dienst, der die Mailqueue verwaltet.

-J

. Prozesslimit (-) Das siebte Feld gibt an, wie viele Instanzen von diesem Service
gleichzeitig laufen diirfen. Auch hier stellt der Bindestrich - den Defaultwert dar,
der gleich dem Wert der Variablen default_process_limit in der Datei main.cf
(s.u.) ist. Standardmissig ist default process_limit auf 100 gesetzt. Ein Pro-
zesslimit von O erlaubt beliebig viele gleichzeitige Instanzen eines Dienstes.

(=]

. Programm und optionale Argumente (smtpd) Im letzten Feld wird der Name des
Programmes erwartet, welches bei Verbindungen auf diesen Service ausgefiihrt
wird. Wird wie im Beispiel kein absoluter Pfad angegeben, so geht Postfix davon
aus, dass das Programm in dem Verzeichnis liegt, welches durch den Parameter
daemon directory in der Datei main.cf spezifiziert ist. Optionale Kommando-
zeilenargumente werden meist per Whitespace eingeriickt in der néchsten Zeile
angegeben.

Das Skript PostMaster.pl einer OTRS-Instanz liest eine Email von der Standardein-
gabe und schreibt sie in die Datenbank. Das Programm pipe des Postfixservers kann
Emails auf die Standardeingabe von beliebigen externen Programmen weiterleiten. Der
notwendige Eintrag in der master.cf sieht wie folgt aus:

otrs2 unix - n n - - pipe
user=otrs2 argv=/var/otrs/otrs2/bin/PostMaster.pl

Der Postfixservice otrs2 wird iiber einen lokalen Unix-Socket angesprochen. Er darf
nur vom Postfixserver angesprochen werden, lduft mit Administratorrechten, wird nicht
in einer Chroot-Umgebung gekapselt, unterliegt keinem Reaktivierungsinterval, und darf
hochstens 100 Mal gleichzeitig gestartet werden. Das Programm pipe wird mit den Rech-
ten des Benutzers otrs2 das externe Programm /var/otrs/otrs2/bin/PostMaster.pl
starten, sobald durch das Routing eine Mail an den Service otrs2 weitergeleitet wird.
Die Datei main.cf stellt die Hauptkonfiguration eines Postfixservers dar, in der neben
iiber 500 Betriebsparametern auch Datenbanken oder Tabellen konfiguriert werden, die
das Mailrouting bestimmen. Postfix teilt Empfingeremailadressen bzw. deren Domains
in Klassen ein. Eine Klasse bestimmt die weitere Verarbeitung einer Email. Gehort eine
Domain z.B. zur Relayklasse, so werden Emails angenommen und weitergeleitet, wenn
die Empfingeradresse zu jener Domain gehort. Der Parameter relay_domains gibt eine
externe Tabelle an, in der alle Domains aufgefiihrt werden, die zur Relayklasse gehoren:

relay_domains = hash:/usr/local/etc/postfix/relay_domains

Die Datei /usr/local/etc/postfix/relay_domains ist eine Textdatei, die in jeder Zeile
den Namen einer Domain auffiithrt, die zur Relayklasse gehort, z.B.:

fh-bielefeld.de
dts.de

31

4 ANWENDUNGSPROGRAMME 4.4 OpenSSL

Das Prefix hash: gibt an, dass nicht diese Textdatei direkt, sondern ein daraus er-
zeugtes Datenbankfile mit dem Namen relay_domains.db verwendet werden soll. Dies
ist besonders bei sehr vielen Eintragen sinnvoll, da indizierte Textdateien effizienter zu
durchsuchen sind. Das Programm postmap erzeugt ein solches Datenbankfile, welches
automatisch das Suffix db erhilt:

$ postmap /usr/local/etc/postfix/relay_domains

Ohne zusétzliche Transporteintrige werden zwar Mails fiir die Domains der Relayklasse
angenommen, aber nicht an die OTRS-Instanzen weitergeleitet. Im schlimmsten Fal-
le wiirde man sogar eine Mailschleife konstruieren. Daher schrinkt man zunéchst die
moglichen Empfangeradressen aller Domains in der Relayklasse ein:

relay_recipient_maps = hash:/usr/local/etc/postfix/relay_recipient_maps

Der Parameter relay recipient maps in der main.cf gibt an, welche Emailadressen
aus der Relayklasse angenommen werden konnen. Die Textdatei relay_recipient_maps
enthélt pro Zeile eine Empféingeradresse, z.B.:

webmaster@fh-bielefeld.de
student1@fh-bielefeld.de
info@dts.de

abuse@dts.de

Auch diese Datei muss per postmap indiziert werden:
$ postmap /usr/local/etc/postfix/relay_recipient_-maps

Mit einer weiteren Tabelle, die Transportziele enthélt, werden nun diese Empfinger-
adressen an verschiedene Ziele wie z.B. OTRS-Instanzen weitergeleitet. Die Datei
/usr/local/etc/postfix/transport maps hat folgenden Inhalt:

webmaster@fh-bielefeld.de otrs1:[127.0.0.1]

student1@fh-bielefeld.de otrs2:[127.0.0.1]
info@dts.de otrs2:[127.0.0.1]
abuse@dts.de otrs1:[127.0.0.1]

Die Emailadressen webmaster@fh-bielefeld.de und abuse@dts.de werden an den Ser-
vice otrsl, Mails an student1@fh-bielefeld.de oder info@dts.de an den Service
otrs2 weitergeleitet. Sind beide Dienste wie oben gezeigt in der Datei master.cf einge-
tragen, werden Mails iiber das Skript PostMaster.pl in die jeweilige OTRS-Datenbank
eingetragen. Die IP-Adresse 127.0.0. 1 ist hier ein Platzhalter, der das erwartete Format
der transport maps kompletiert.

4.4. OpenSSL

OpenSSL ist ein Softwarepaket zum Umgang mit kryptographischen Schliisseln und Zer-
tifikaten. Es ist frei als Opensource-Software'! erhiltlich und gehért zum Standardum-
fang eines FreeBSD-Systems. OpenSSL besteht im wesentlichen aus einer C-Biblibothek
fiir Secure Sockets Layer (SSL) und dem darauf basierenden Kommandozeilentool

openssl. Die Bibliothek wird meist in Programmen verwendet, die iiber einen unsicheren
Kommunikationskanal wie dem Internet Nachrichten austauschen miissen. So greift der
Apache Webserver (s. Kapitel 4.1) mit dem Modul mod_ss1 auf die OpenSSL-Library zu.

Uhttp://www.openssl.org

32

http://www.openssl.org

4 ANWENDUNGSPROGRAMME 4.4 OpenSSL

Das Kommandozeilenprogramm wird eingesetzt, um die fiir eine sichere Kommunikation
notwendigen Schliissel und Zertifikate zu erstellen. Sicherheit bedeutet:

Vertraulichkeit Die iibertragenen Daten kénnen nur von den an der Kommunikation teil-
nehmenden und dazu authorisierten Parteien eingesehen werden, z.B. dem Browser
des Anwenders und dem HTTPS-Webserver.

Integritdt Die Daten werden auf ihrem Weg zwischen den Parteien nicht veréndert.
Insbesondere muss Datenmanipulation erkannt und als ungiiltige Kommunikation
von allen Teilnehmern verworfen werden.

Authentizitat Die Kommunikationspartner miissen untereinander vertrauen. So sind
Daten, die vertraulich und integer tibermittelt wurden, wertlos, wenn der Kom-
munikationspartner nicht derjenige ist, der er vorgibt zu sein.

Vertraulichkeit wird i.d.R. mittels Blockchiffren wie dem Advanced Encryption Stan-
dard (AES) oder dem <eren Data Encryption Standard (DES) erreicht. Neben einer
sicheren, sprich starken Verschliisselung soll ein Chiffrierungsalgorithmus einen hohen
Datendurchsatz bieten. Integritéit lasst sich mit Priifsummen oder Hash-Funktionen er-
reichen. Hash-Funktionen bilden beliebig grosse Urmengen auf eine beschrinkte Bild-
menge ab. So erzeugt die Hash-Funktion Secure Hash Algorithmus (SHA) unabhéngig
von den eingegebenen Daten immer eine 20 Byte grosse Ausgabe, den Hash- Wert die-
ser Daten. Man fordert von einer Hash-Funktion Bijektivitdt und Nicht-Existenz einer
Umkehrfunktion. Obgleich es wegen der beschrankten Bildmenge theoretisch unmoglich
ist, sollen keine Kingabedaten existieren, die den gleichen Hash-Wert liefern. Liefern
zwei unterschiedliche Eingabedaten den gleichen Hash-Wert, so liegt eine Kollision vor.
Auf keinen Fall darf es moglich sein, aus einem Hash-Wert das urspriingliche Datum zu
ermitteln. Ferner sollen alle moglichen Hash-Werte tatséichlich erreicht werden koénnen.
FEine Vertrauensstellung zwischen den Kommunikationsteilnehmern erreicht man mit-
tels asymetrischer Verschliisselung bei Verwendung einer Zertifizierungsinstanz. Hierzu
erzeugen die Kommunikationsteilnehmer, deren Authentizitit bestitigt werden soll, ein
sogenanntes Schliisselpaar, bestehend aus einem privaten (private key) und einem &ffent-
lichen Schliissel (public key). Beide Schliissel miissen folgenden Anforderungen geniigen:

e Der private Schliissel darf nicht aus dem o6ffentlichen Schliissel berechnet werden
kénnen

e Mit dem privaten Schliissel kénnen Daten digital signiert werden. Diese Signatur
und somit die Integritdt der Daten kann mit dem 6ffentlichen Schliissel verifiziert
werden

e Mit dem offentlichen Schliissel konnen Daten vertraulich verschliisselt werden. Die
verschliisselten Daten diirfen nur mit Hilfe des privaten Schliissels wieder in die
urspriinglichen Klartextdaten {iberfiihrt werden.

e Es muss iiberpriift werden kénnen, ob privater und 6ffentlicher Schliissel zusammen
gehoren. Praktisch bedeutet dies, dass der offentliche Schliissel aus dem privaten
erzeugt werden kann.

Der offentliche Schliissel sollte publiziert werden oder zumindest auf Anfrage abrufbar
sein. Der private Schliissel darf jedoch auf keinen Fall veroffentlich werden. Die Ver-
trauensstellung wird erst mit Hilfe einer dritten, an der eigentlichen Dateniibertragung
unbeteiligten Partei erreicht, der sogenannten Certificate Authority (CA). Diese signiert

33

4 ANWENDUNGSPROGRAMME 4.4 OpenSSL

mit ihrem privaten Schliissel die 6ffentlichen Schliissel aller Kommunikationsteilnehmer
und deren Metadaten wie Name, Emailadresse, Wohnort, etc. Mit diesen Zertifikaten
kann sich nun jeder Kommunikationspartner gegeniiber anderen ausweisen. Jeder Teil-
nehmer kann mit Hilfe des offentlichen Schliissels der CA ermitteln, ob das Zertifikat
seines Gegeniibers tatsidchlich von der CA ausgestellt wurde. Vertrauen alle Teilnehmer
der CA, so vertrauen sie automatisch ihrem jeweiligen Kommunikationspartner. Wie
und ob ein Teilnehmer der CA vertraut, kann allerdings nicht technisch gelést werden'?.
In der Praxis wird die gesamte Situation vereinfacht. Zum einen kommunizieren nur
zwei Teilnehmer miteinander, entweder ein Client und ein Server (z.B. per HTTPS)
oder zwei natiirliche Personen per sicherer Email. Zum anderen wird auf eine Authenti-
zitdtsiiberpriifung des Clients meist verzichtet (nicht jedoch in Sicherheitsarchitekturen
wie Kerberos oder dem davon abgeleiteten Active Directory (AD)). Um ein Zertifikat zu
erhalten, sind vier Schritte notwendig:

1. Ein Schliisselpaar muss vom Antragsteller des Zertifikates generiert werden

2. Der offentliche Schliissel wird in einem Zertifikatsrequest zusammen mit Angaben
iiber den Antragsteller wie Name, Emailadresse, etc. an eine CA gesendet

3. Mit ihrem privaten Schliissel signiert die CA nach Uberpriifung die im Antrag
enthaltenen Daten und sendet das erzeugte Zertifikat an den Antragsteller zuriick

4. Zertifikat und privater Schliissel miissen in die Anwendung, z.B. einen Webserver,
eingebunden werden.

Schritt 3 ist i.d.R. mit finanziellem Aufwand fiir den Antragsteller verbunden und wird
daher hier nicht angewendet. Stattdessen wird der Zertifikatsrequest mit dem privaten
Schliissel des Antragstellers unterschrieben. Man spricht dann von einem selbst-signierten
Zertifikat. Setzt man dieses und den privaten Schliissel in einem Webserver ein, so wer-
den nur Vertraulichkeit und Integritéit der Daten erzielt. Fiir den Einsatz in den Webser-
vern der OTRS-Instanzen bietet dies hinreichende Sicherheit. Natiirlich kann ein selbst-
signiertes gegen ein von einer anerkannten CA unterschriebenes Zertifikat ausgetauscht
werden. Fiir die Schritte 1 bis 3 kann OpenSSL verwendet werden. Mit folgendem Be-
fehl wird ein privater Schliissel nach dem Rivest-Shamir-Adleman (RSA)-Algorithmus
erzeugt:

$ openssl genrsa —out private_key.txt
OpenSSL unterstiitzt neben RSA auch den Digital Signature Algorithm (DSA). Dieser

erfordert eine Parameterdatei, die jedoch an dieser Stelle nicht weiter erldutert wird. Der
Offentliche Schliissel kann mit der Option -pubout ausgegeben werden:

$ openssl rsa —in private_key.txt —pubout

Einen Zertifikatsrequest erzeugt man mit dem folgenden Befehl:

$ openssl req —mew —config req-config.txt —key private_key.txt \
—out cert_req.txt

Die Datei cert_req.txt enthilt den o6ffentlichen Schliissel sowie die Angaben iiber den
Antragsteller aus der Datei req_config.txt und kann daher zur Zertifikatserstellung an
eine CA gesendet werden. Verwendet man zusétzlich den Parameter -x509, so erzeugt
OpenSSL ein selbst-signiertes Zertifikat:

12y/gl. die Situation im alltéglichen Leben, in der die Echtheit einer Person festgestellt werden muss,
was i.a. durch Vertrauen in hoheitlich ausgestellte Dokumente wie Personalausweis, Geburtsurkunde,
etc. gelost wird.

34

4 ANWENDUNGSPROGRAMME 4.4 OpenSSL

$ openssl req —mew —x509 —config req_config.txt —key private_key.txt \
—out self_signed_cert.txt

Der private Schliissel private key.txt und das selbst-signierte Zertifikat

self signed_cert.txt sind geeignet, um z.B. per mod_ssl in einen Apache Webser-
ver eingebunden zu werden. Die Datei req_config.txt besteht aus mindestens zwei
Abschnitten:

[req]
distinguished_name = request_options
prompt = no

[request_options]

C = DE

ST = NRW

L = Herford

0 = DTS

ou = ISP

CN = www.dts.de
emailAddress = info@dts.de

Der Abschnitt [req] wird beim Erzeugen eines neuen Zertifikatsrequestes oder ei-
nes selbst-signierten Zertifikates ausgewertet. Der Parameter prompt gibt an, ob die
Angaben iiber den Antragsteller manuell beim Aufruf von openssl eingegeben wer-
den sollen oder ob die Werte aus dieser Konfiguration verwendet werden sollen. Wird
prompt auf no gesetzt, werden jegliche interaktiven Riickfragen unterdriickt. Der Para-
meter distinguished name definiert den Abschnitt, der die Angaben zum Antragsteller
enthilt, hier request_options. In diesem Abschnitt werden folgende Daten erwartet:

Country (C) definiert das Heimatland des Antragstellers bzw. das Land, in dem der
Webserver steht

State (ST) definiert das Bundesland

Locality (L) definiert die Heimatstadt des Antragstellers bzw. die Stadt, in der der
Webserver steht

Organization (O) definiert die Firma bzw. Einrichtung, fiir die der Antragsteller arbei-
tet oder die den Webserver besitzt

Organizational Unit (OU) definiert die Abteilung, in der der Antragsteller arbeitet
bzw. die den Webserver betreut

Common Name (CN) definiert den allgemeinhin bekannten Namen des Webservers

emailAddress definiert die Emailadresse des Antragstellers bzw. des fiir den Webserver
zustédndigen Administrators

Pro Datei kénnen mehrere solcher Abschnitte angelegt werden; sie miissen sich lediglich
im Namen unterscheiden (z.B. request_optionsi, request_options2, usw.). Somit ist
es moglich, mit einer Konfigurationsdatei unterschiedliche Zertifikatsantrige zu erzeu-
gen.

35

5 PROGRAMMIERSPRACHEN

5. Programmiersprachen

5.1. Perl
5.1.1. Aufruf

Die Practical Extraction and Report Language (Perl) wurde 1987 vom damals bei der
National Security Agency (NSA) angestellten Linguisten Larry Wall entwickelt, um ein
einfaches, aber dennoch méchtiges Werkzeug zur Textverarbeitung zu erhalten. Perl ist
eine Interpretersprache, d.h. in Perl geschriebene Programme, sogenannte Skripte, lie-
gen als Klartext vor und werden erst zur Laufzeit in einen Bytecode iibersetzt. Der
Perl-Interpreter selbst ist in C geschrieben und wurde auf eine Vielzahl von Systemen
portiert, darunter die meisten Unix-Derivate wie FreeBSD und Linux, aber auch Mi-
crosoft Windows. Eine lauffihige Installation von Perl umfasst neben dem Interpreter
mehrere hundert Bibliotheken, von denen die betriebssystemnahen und -spezifischen in
C, die iibrigen in Perl programmiert sind. Ein Perlskript kann auf unterschiedliche Weise
aufgerufen werden. Trivial und nur fiir sehr wenige Codezeilen geeignet ist der parame-
terlose Aufruf des Interpreters aus der Shell des Betriebssystems. Das Skript erwartet
der Interpreter hierbei auf seiner Standardeingabe, sprich, der Anwender kann es direkt
auf der Tastatur eingeben:

$ perl

print ”hello ,_world\n”;

Die Eingabe wird mittels der Tastenkombination STRG+D beendet, und die Zeichenkette
hello, world ausgegeben. Gleichwertig ist die Ubergabe des Skriptinhaltes per Komman-
dozeilenparamter -e:

$ perl —e ’print.”hello ,_world\n”;’

In der Regel werden Perlskripte jedoch nicht fliichtig in (Klartext-)Dateien gespeichert,
deren Name auf den Zusatz .pl enden sollte. Zum Erstellen der Programmtexte wird
keine spezielle Entwicklungsumgebung benétigt. Ein einfacher Texteditor wie z.B. vi un-
ter Unix oder Notepad unter Windows geniigen. Fiir grossere Projekte sollte jedoch auf
komfortablere Entwicklungswerkzeuge wie Eclipse'® oder OpenKomodo'* zuriickgerif-
fen werden, die {iber Hilfsmittel wie Syntaxhighlighting, Code-Faltung, Templates, etc.
verfiigen. Ein (auf der Festplatte gespeichertes) Skript kann dem Perl-Interpreter als
Kommandozeilenparameter zur Ausfithrung tibergeben werden:

$ perl hello.pl

Eleganter ist es unter unixartigen Betriebssystemen jedoch, die sogenannte Shebang-Zeile
zu verwenden. Dabei wird die erste Zeile des Perlskripts mit den beiden Zeichen #! und
der genauen Pfadangabe des Perlinterpreters eingeleitet. Fiir das Skript hello.pl ergibt
sich somit:

#!/usr/bin/perl
print ”hello ,_.world\n”;

Die Shebang-Zeile dient dem Betriebssystemkernel als Hinweis, mit welchem Programm
das Skript auszufiihren ist. Der Kernel wird in diesem Fall das Programm /usr/bin/perl
mit dem Parameter hello.pl starten. Ferner leitet die Raute in Perl einen Kommen-
tar ein, so dass die Shebang-Zeile das Skript nicht beeinflusst. Gibt man dem Skript
hello.pl noch per Aufruf von chmod a+x hello.pl Ausfithrungsrechte, kann es wie
ein gewdhnliches Programm gestartet werden:

Bhttp://www.eclipse.org
Mhttp://www. openkomodo . com

36

http://www.eclipse.org
http://www.openkomodo.com

5 PROGRAMMIERSPRACHEN 5.1 Perl

$./hello.pl

5.1.2. Variablen

Perl ist eine schwach typisierte Sprache, die keine explizite Variablendeklaration erfordert
und bei der sich der eigentliche Typ einer Variablen erst aus dem Kontext ergibt. Der
Name einer Variablen darf sich aus beliebigen alphanumerischen Zeichen inklusive des
Unterstrichs zusammensetzen mit der Bedingung, dass das erste Zeichen keine Zahl
ist. Zudem wird zwischen Gross- und Kleinschreibung unterschieden (case-sensitive), so
dass die Variablen $test und $Test nicht dieselbe Speicherstelle darstellen. Es existieren
folgende 5 Typen:

Scalare Ein Scalar ist ein eindimensionaler Datentyp, der

e Zeichenketten nahezu beliebiger Linge (nur begrenzt durch den virtuellen
Hauptspeicher)

e Ganzzahlwerte mindestens im Wertebereich des C-Typs int, also in der Regel
von —23! bis 231 — 1

e Gleitkommazahlen im Wertebereich des C-Typs double, also mit 53 Bit grosser
Mantisse und 11 Bit grossem Exponenten

speichern kann. Scalare werden durch ein dem Bezeichner vorangestelltes Dollar-
zeichen identifiziert, wie z.B. in $test.

Arrays Ein Array ist eine Liste oder Stack von Scalaren. Der Zugriff auf einzelne Werte
kann iiber einen impliziten numerischen Index erfolgen, welcher bei 0 beginnt und
bis zur Anzahl der Elemente minus 1 lauft. Ein Array wird per vorangestelltem At-
Zeichen identifiziert, wie z.B. in @1iste. Einzelne Elemente, welche ja einen Scalar
darstellen, werden jedoch per Dollarzeichen und nachgestellter Elementnummer in
eckigen Klammern angesprochen. So stellt $1iste[1] das zweite Element jenes
Arrays dar.

Hashes Ein Hash ist vergleichbar mit einem Array, bei dem die Indizierung jedoch iiber
beliebige Scalare erfolgt. Bildlich gesprochen besteht ein Hash aus einer Anzahl
von Schliissel-/Wertepaaren. Hashes werden per vorangestelltem Prozentzeichen
angesprochen, einzelne Elemente (Scalare) jedoch per Dollarzeichen und nachge-
stelltem Schliissel in geschweiften Klammern. So spricht $kunde{"Strasse"} den
Wert an, der im Hash %kunde unter dem Schliissel Strasse abgelegt ist.

Filehandles Ein Filehandle stellt einen Input- oder Outputstream dar, der z.B. mit der
Funktion print beschrieben oder von der Funktion open zum Lesen aus einer
Datei geoffnet werden kann. Filehandles werden als einzige Ausnahme ohne Prefix
angesprochen.

Typeglobs Mit einem Typeglob wird ein Alias fiir einen anderen Bezeichner oder einen
Funktionsnamen in der internen Symboltabelle von Perl angelegt. Ein Typeglob ist
somit vergleichbar mit Referenzen in C++ oder Hardlinks in Dateisystemen. Das
Prefixzeichnen fiir Typeglobs ist das Sternchen. In folgendem Beispiel wird fiir den
Scalar $a der Typeglob *b angelegt. Danach kann $b wie $a verwendet werden:

$a = ”hello ,.world”;
x*b = xa;
$b = ? hallo , .welt” ;

print $a; # Gibt "hallo, welt” aus, weil b ein Typeglob fir a ist

37

5 PROGRAMMIERSPRACHEN 5.1 Perl

Zu beachten ist, dass ein Typeglob iiber den Namen gebildet wird, so dass nach
obigem Beispiel auch die Arrays @a und @b, die Hashes %a und %b, usw. identisch
sind.

Jeder Variablentyp besitzt in Perl seinen eigenen Namensraum, so dass man z.B. einen
Scalar $test, einen Hash %test und eine Funktion (s.u.) namens test anlegen kann.
Zwecks Verstéandlichkeit sollte man davon jedoch selten bis gar nicht Gebrauch machen.
Wertzuweisungen erfolgen wie in anderen Programmiersprachen per Gleichheitszeichen.
Nicht deklarierte oder nicht initialisierte Variablen haben den Metawert undef. Boolsche
Ausdriicke werden wie in C behandelt. Zu logisch falsch evaluieren:

e Variablen im Zustand undef

e ein Scalar mit dem numerischen Wert 0

e ein Scalar, der eine Zeichenkette der Linge 0 darstellt
e ein leeres Array

e ein leerer Hash

Zeichenketten werden in einfachen oder doppelten Anfiithrungsstrichen notiert; innerhalb
doppelter Anfithrungsstriche werden Variablen expandiert:

$a = "test”;
$b = ?this_is.a_.$a”; # $a wird expandiert
$c = ’this_is.a.%a’; # $a wird nicht expandiert

Der Scalar $a enthilt die Zeichenkette test, $b ist this is a test, $c hingegen this
is a $a. Mo6chte man innerhalb doppelter Anfithrungsstriche reservierte Zeichen wie
Variablenprefixe verwenden, miissen diese mit einem vorangestellten Backslash maskiert
werden, was gemeinhin escapen genannt wird:

$d = 7"this_is.a.\$%a”; # $a wird nicht als Variable erkannt

Numerische Werte konnen als ganze Zahl, in Kommaschreibweise oder als Exponenten-
darstellung zur Basis 10 eingegeben werden:

$year = 2007;

$pi = 3.1415;

$million = 1e6;
$zahl = —4.711e—43;

Arrays werden als Liste von Scalaren innerhalb runder Klammern zugewiesen:

@namen = (”Meier” , ”Schmidt”, ”Schuster”);

@liste = (?Tisch”, 5, 1.5);

@elemente = ();

Dem Array @elemente wird eine leere Liste zugewiesen. Dies ist ein typisches Konstrukt,
um eine nicht initialisierte Variable zu vermeiden. Ein Array kann auch aus einem schon
definierten Array Werte erhalten:

@Qangestellte = @namen;
@mitarbeiter = (?Chefl”, ” Chef2” , @namen);

Ferner kann man aus einem Array nur bestimmte Elemente in eine neue Liste iiberneh-
men. Dies wird (Array-)Slice genannt:

@a = @mitarbeiter [1..3];
@b = @mitarbeiter [0,0,4];
@c = @mitarbeiter [99];

38

5 PROGRAMMIERSPRACHEN 5.1 Perl

Das Array @a enthilt somit den zweiten bis vierten Mitarbeiter, @b zweimal den ersten
und einmal den fiinften Mitarbeiter. Eine offensichtliche Arraygrenziiberschreitung wie
in der Zuweisung von Array @c erzeugt keinen Fehler oder Warnung, sondern (in diesem
Fall) lediglich ein leeres Array. Hashes konnen wie Arrays als Liste initialisiert werden,
bei der alle Elemente an ungeraden Indizes als Schliissel und alle Elemente an geraden
Indizes als Werte betrachtet werden:

%gehalt = (”meier”, 2200, ”schulze”, 2500);

Verwendet man zwischen den Elementen mit ungeradem und geradem Index statt eines
Kommas jeweils den dquivalenten Operator =>, wird obiges Beispiel verstéandlicher:

%gehalt = (”meier” => 2200, ”"schulze” => 2500);

Im Hash %gehalt wird somit dem Eintrag meier der Wert 2200, dem Eintrag schulze
der Wert 2500 zugeordnet. Umgekehrt lédsst sich auch ein Hash einem Array zuweisen:
@liste = %gehalt ;

Das Array @liste enthélt hiernach alle Schliissel-/Wertepaare als flache Liste.

In Perl gibt es ferner die Moglichkeit, von fast allen aufgefithrten Datentypen sogenannte
Referenzen zu bilden. Dies sind Zeiger oder auch Pointer, wie man sie von anderen Spra-
chen kennt. Eine Referenz ist selbst ein Scalar, der den Typ der referenzierten Variable
(Scalar, Array, Hash, usw.) und deren Speicheraddresse beinhaltet. Die Referenz einer
Variablen wird mit dem Backslash gebildet:

$array_ref = \@array;
Der Scalar $array ref ist nun eine Referenz (ein Zeiger) auf das Array @array. Der
Zugriff auf die sich hinter einer Referenz befindlichen Variablen, sprich die Dereferenzie-

rung, erreicht man, indem man vor die Referenz das Prefix des urspriinglichen Datentyps
stellt:

Qliste = @{$array_ref };
Das Array @liste ist nun eine inhaltliche Kopie von @array. Die Dereferenzierung weist
syntaktische und inhaltliche Ahnlichkeit zum Typecasting in C und artverwandten Spra-

chen auf. So erzeugt das Dereferenzieren von $array_ref in einen Hash einen Laufzeit-
fehler (”Can’t coerce array into hash”):

%hash = @{$array_ref};

Wegen der Operatorpriazedenz kann man hier auf die geschweiften Klammern verzichten:
%hash = @S$array_ref;
Der Zugriff auf ein einzelnes Element des Arrays iiber seine Referenz geschieht nicht iiber

das At-Zeichen, sondern iiber Dollarzeichen, da man ja einen Scalar erhalten méochte.
Hierbei sind geschweifte Klammern jedoch obligatorisch:

$elem = ${S$array_ref }[0];

Fiir C-Programmierer vertrauter und eleganter ist der Zugriff {iber den Operator ->:
$elem = $array_ref —>[0];

Analog werden Referenzen von Scalaren behandelt:

$string = "hello ,.world\n”;
$scalar_ref = \$string;
print ${$scalar_ref}; # Gibt "hello, world” aus

Der Umgang mit Hashreferenzen dhnelt dem von Arrayreferenzen. Auch hierbei kann
zwischen dem Dereferenzierungsoperator und der Dereferenzierung per geschweifter
Klammern gewéhlt werden:

39

5 PROGRAMMIERSPRACHEN 5.1 Perl

%farben = ("red” => ”rot”, ”"blue” => ”"blau”, ”green” => "griin”);
$farben_ref = \%farben;

print $farben_ref—>{"blue” }; # gibt blau aus

print ${$farben_ref}{"red” }; # gibt rot aus

Eine Ausnahme bilden lediglich Filehandles. Sie kénnen nicht referenziert werden. Re-
ferenzen konnen jedoch nicht nur von Variablen gebildet werden. Perl gestattet es, Da-
tenstrukturen direkt als Referenz im Speicher anzulegen (#hnlich einer auf dem Stack
initialisierten Struktur in C). Man spricht dann von einem anonymen Array, anonymen
Scalar, usw. Von Vorteil ist hierbei, dass man einen (oftmals nicht wieder bendtigten)
Bezeichner spart. Ausserdem werden mehrdimensionale oder komplexe Datenstrukturen
iiber derartige Referenzen auf anonyme Speicherbereiche gebildet. Ein anonymer Scalar
wird erzeugt, indem man vor den eigentlichen Wert den Referenzoperator \ schreibt:
$string_ref = \”hello ,_world”;

$integer_ref = \23;
$real_ref = \42.23;

Die eigentlichen Werte erhélt man nun wieder per Dereferenzierung:

print $$string_ref; # gibt ”“hello, world” aus
print Sinteger_ref; # gibt 23 aus
print $$real_ref; # gibt 42.23 aus

Fiir anonyme Arrays und Hashes existieren jeweils eigene Operatoren, da es keinen prin-
zipiellen Unterschied in deren Initialisierung gibt und Perl daher nicht unterscheiden
konnte, ob eine anonyme Liste ein Array oder einen Hash darstellt. Die Werte fiir an-
onyme Arrays werden in eckige Klammern gefasst:

$mitarbeiter_ref = [”?Meier”, ”Schmidt”, ”Schulze”];
print $mitarbeiter_ref —>[2]; # gibt 7Schulze” aus

Anonyme Hashes werden hingegen per geschweifter Klammern deklariert:

$farben_ref = {

»yellow” => "gelb”,

2 gray77 :> ” grau” ,

”black” => "schwarz”
b
print $farben_ref—>{"yellow” }; # gibt 7gelb” aus
Mehrdimensionale Datentypen kénnen prinzipiell auf zwei Arten gebildet werden. So
ist es moglich, als Datentyp erster Dimension ein benanntes Array oder einen Hash zu
werden, deren Werte dann jeweils Referenzen auf weitere Arrays oder Hashes sind:

@rechteck = ([0,0], [1,0], [1,1], [0,1]);
Das Array @rechteck enthélt vier Werte, ndmlich 4 Referenzen auf je ein anonymes Ar-
ray, welche wiederum je zwei Scalare enthalten. Einzelne Werte dieses Arrays kann man

nun {iber Dereferenzierung oder iiber die aus anderen Programmiersprachen bekannte
Matrixschreibweise ansprechen:

$oben_links_y = $rechteck[3] —>[1];
$unten_links_x = $rechteck [0][0];

Analog kann man einen Hash mit anonymen Arrays definieren:

%rechteck = (

links_unten => [0,0],
rechts_unten => [1,0],
rechts_oben = [1,1],
links_oben => [0,1]

40

5 PROGRAMMIERSPRACHEN 5.1 Perl

Auch hierbei sind wieder beide Zugriffsarten moglich:

$oben_rechts_.x = $rechteck{”rechts_oben” }[0];

$unten_rechts_y = $rechteck{”rechts_unten” } —>[1];

Weitaus hiufiger wird man jedoch komplexe Strukturen komplett aus anonymen Daten

konstruieren, z.B. als Referenz auf einen Hash aus Referenzen auf Hashes:

$rechteck = {
links_unten => {

x = 0,
y = 0

}7

rechts_unten => {
x = 1,
y =0

}7

rechts_oben => {
x => 1,
y =1

}7

links_oben => {
x = 0,
y =1

}

s
Der Zugriff sollte hierbei zwecks Lesbarkeit {iber den Dereferenzierungsoperator erfolgen:

Sunten_rechts_x = $rechteck—>{"rechts_unten”}->{"x” };

5.1.3. Giiltigkeitsbereich

In Perl miissen Variablen nicht explizit deklariert werden. Sie existieren ab ihrer er-
sten Verwendung. Ebenso werden nicht mehr referenzierte Speicherbereiche automatisch
durch einen garbage collector freigegeben. Dennoch sollte ein Programmierer von den
Moglichkeiten Gebrauch machen, die Perl zur strukturierten Programmierung bereit
hilt. Lokale Variablen innerhalb eines Blocks oder einer Funktion (s. Kapitel 5.1.7) wer-
den i.d.R. per my erzeugt, so dass sie ausserhalb jenes Blocks und iiber Funktionsaufrufe
hinweg nicht sichtbar ist. Datei-globale Bezeichner kénnen ebenfalls per my angelegt wer-
den, werden jedoch meistens mit our deklariert. Dies hat vor allem stilistische Griinde:
Eine per our global deklarierte Variable kann innerhalb eines Blocks oder einer Funktion
ebenfalls per our deklariert werden und hat dann den Wert der globalen Variablen. Mit-
tels my angelegte Verénderliche hingegen haben grundsétzlich einen neu initialisierten
Speicherbereich zur Folge: Sie verdecken globale Variablen. Ferner kann auf Variablen,
die in einem Modul (s. Kapitel 5.1.8) mit my angelegt wurden, nicht von ausserhalb
zugegriffen werden.

5.1.4. Operatoren

Da Perl eine schwach typisierte Sprache ist, kommen den Operatoren eine besondere Be-
deutung zu. Variabeln werden anhand der Argumenttypen ausgewertet, die ein Operator
erwartet. So stellt z.B. der folgende Ausdruck eine korrekte Addition dar:

$ergebnis = 10 + 0.5 + 710”7 + 72.57;

Der Scalar $ergebnis enthélt nun den numerischen Wert 23. Die in Perl zur Verfiigung
stehenden Operatoren sind weitestgehend von C iibernommen:

41

5 PROGRAMMIERSPRACHEN 5.1 Perl

Tabelle 2: Ausgewihlte Operatoren in Perl

Operator Beschreibung

++ inkrementiert einen Scalar numerisch

-- dekrementiert einen Scalar numerisch

+, - addiert bzw. subtrahiert zwei Scalare numerisch

/ dividiert zwei Scalare, Ergebnis kann ein Integer- oder Real-
wert sein

* multipliziert zwei Scalare

yA Rest einer Ganzzahldivision

! negiert einen Ausdruck

*% exponentiert einen Scalar

S liefert den Index des letzten Elementes eines Arrays

X wiederholt einen Scalar n-Mal: "a" x 3 liefert "aaa"

. verbindet zwei Scalare als Zeichenkette

<FILEHANDLE> liest die néchste Zeile von FILEHANDLE

qw($SCALAR1 erzeugt aus den aufgefiihrten Scalaren ein Array, ohne die

$SCALAR2 ...) Notwendigkeit, Zeichenketten in Hochkommata zu setzen und
Kommata zwischen den Scalaren zu verwenden

<<, >> bitweises Schieben eines Scalars nach links bzw. rechts

<, >, <=, >= priift zwei Scalare numerisch auf kleiner, grosser, kleiner-gleich

bzw. grosser-gleich

1t, gt, le, ge priift zwei Scalare textuell auf kleiner, grosser, kleiner-gleich
bzw. grosser-gleich
== I= priift zwei Scalare numerisch auf Gleichheit bzw. Ungleichheit

<=> vergleicht zwei Scalare numerisch: 1 <=> 2 liefert -1, 1 <=>
1 liefert 0, 2 <=> 1 liefert 1

eq, ne vergleicht zwei Scalare textuell

cmp vergleicht zwei Scalare textuell: "a" cmp "b" liefert -1,
"a" cmp "a" liefert 0, "b" cmp "a" liefert 1

& |, ° bitweise Und-, Oder- bzw. Xor-Verkniipfung zweier Scalare

&&, || logische Und- bzw. Oder-Verkniipfung

= Wertzuweisung

+=, -=, *x=_ /= Y=, | wendet die vor dem Gleichheitszeichen stehende Operation

<<=, >>=, .=, &&=, | auf die Zielvariable an und weist ihr das Ergebnis zu: $a *=

| |= 3 multipliziert $a mit 3, $b .= "hallo, welt" fiigt an das

Ende von $b die Zeichenkette hallo, welt hinzu

=" 1~ priift einen Scalar gegen ein Textmuster (s. Kapitel 5.1.5): =~
gibt bei Ubereinstimmung 1 bzw. logisch wahr, bei Nichtiiber-
einstimmung 0 bzw. logisch falsch zuriick, !~ ist die Negation
von =

5.1.5. Reguldre Ausdriicke

Ein Regulirer Ausdruck (auch regular expression (regex)) stellt eine Vorschrift dar, gegen
die ein Scalar bzw. eine Zeichenkette gepriift werden kann. Ein Regex ist eine vereinfachte
Alternative zu einem lexikalischen Parser. Man kann ihn sich als eine Art Schablone
vorstellen, die {iber einen zu priifenden Text gelegt wird. Neben dem prinzipiellen Test, ob
ein regulidrer Ausdruck auf einen Text {iberhaupt zutrifft, kann Perl bestimmte Teile des

42

5 PROGRAMMIERSPRACHEN 5.1 Perl

Regex’s bzw. des Textes zuriickliefern oder auch ersetzen. Derartige Tests werden durch
die in Kapitel 5.1.4 aufgefithrten Operatoren =~ bzw. ! ~ eingeleitet. Der eigentliche Regex
wird per Konvention in Schragstriche gefasst. Im folgenden Beispiel wird iiberpriift, ob
der Scalar $name die Zeichenkette schulze enthélt:

$name =" /schulze/

Mochte man innerhalb des reguléren Ausdrucks Schrigstriche verwenden, miissen diese
maskiert werden:

$preis =~ /Euro\/kg/

Alternativ kann der Regex mit einem kleinen m (fiir match) eingeleitet werden. Somit
konnen statt der Schragstriche Zeichen verwendet werden, die nicht im Regex vorkom-
men:

$preis =~ m@Euro/kgQ

Soll ein Ausdruck unabhingig von Gross- und Kleinschreibung zutreffen (case-insensi-
tive), so muss ein kleines i angehéingt werden:

$name =" /schulze/i

Dieser Ausdruck wird wahr, sofern die Variable $name eine der Zeichenketten Schulze,

schulze, scHulzE o.4. enthélt. Die Sonderzeichen ~ und $ treffen auf den Anfang bzw.
das Ende einer Zeichenkette zu:

$name =" /" Schulze$/

Hier miisste $name genau die Zeichenkette Schulze enthalten. Innerhalb eines reguléren
Ausdrucks lassen sich bedingt logische Operatoren verwenden:

$name =~ /Sch|ber/

Dieser Ausdruck trifft auf Namen zu, die Sch oder ber enthalten, also z.B. Schmidt,

Obermann, Schober, etc. Mochte man lediglich an einer Position eine Variation zulassen,
so miissen eckige Klammern eingesetzt werden:

$artikel =~ /T[ea]ster/
Mit diesem Regex werden alle Zeichenketten erkannt, die Tester oder Taster enthalten.
Leitet man eine solche in eckigen Klammern gefasste Zeichenklasse mit dem Negations-

operator ~ ein, so trifft der Ausdruck nur dann zu, wenn an der entsprechenden Stelle
die aufgefiithrten Zeichen nicht stehen:

$artikel =~ /T[ea]ster/
Hier treffen alle Zeichenketten wie z.B. Tgster, T8ster, Tister zu, nicht aber Tester

und Taster. Innerhalb einer Zeichenklasse kann zur Vereinfachung auch ein Bereich von
Zeichen angegeben werden:

$artikel == /T[e—o]ster/

Dieser Ausdruck wird nur wahr, wenn $artikel den String Tester, Tfster, ... , Tnster
oder Toster enthilt. Zusétzlich stehen innerhalb reguldrer Ausdriicke die in Tabelle 3
vordefinierten Zeichenklassen zur Verfiigung.

Tabelle 3: Vordefinierte Zeichenklassen in reguléren Ausdriicken

Zeichenklasse Beschreibung
. trifft auf jedes Zeichen zu
\d trifft auf eine Ziffer zu

43

5 PROGRAMMIERSPRACHEN 5.1 Perl

Tabelle 3: Vordefinierte Zeichenklassen in reguléren Ausdriicken (Forts.)

Zeichenklasse Beschreibung

\D trifft auf jedes Zeichen ausser einer Ziffer zu

\w trifft auf alphanumerische Zeichen und den Unterstrich zu

\W trifft auf jedes Zeichen ausser alphanumerischen und den Un-
terstrich zu

\s trifft auf Leerzeichen und Tabulatoren (Whitespaces) zu

\S trifft auf jedes Zeichen ausser Whitespaces zu

Ferner kénnen Quantifizierungsoperatoren eingesetzt werden, mit denen angegeben
wird, wie oft ein Zeichen im zu priifenden Text vorkommen muss. Das Fragezeichen
steht hierbei fiir ein null- oder einmaliges Vorkommen, das Pluszeichen fiir ein mindestens
einmaliges und das Sternchen fiir ein beliebig hidufiges Vorkommen. So ist die folgende
Aussage wahr, wenn der Scalar $name "Ana", "Anna", "Annna" usw. enthélt:

$name =~ /Anta/

Das Fragezeichen steht fiir null- oder einmaliges Vorkommen:
$reise =~ /Schifff?ahrt/

Dieser Ausdruck lasst das Wort Schiffahrt sowohl in alter als auch in neuer Recht-
schreibung gelten. Mithilfe von geschweiften Klammern lassen sich Wiederholungen frei
definieren:

$einkommen =~ /\d{3}/

Der Scalar $einkommen muss hier aus mindestens 3 Ziffern bestehen, damit der Ausdruck
wahr wird.

$preis =~ /\d{3,6}/

$password =" /\w{4,}/

Hier muss $preis aus mindestens 3, aber hochstens 6 Ziffern bestehen, wahrend fiir
$password 4 oder mehr alphanumerische Zeichen gefordert sind. Reguldre Ausdriicke
konnen nicht zum einfachen Testen eines Scalars dienen, sondern auch, um erkann-
te Passagen zur weiteren Verarbeitung in Variablen zu speichern. Hierzu werden die
gewiinschten Passagen in runde Klammern gefasst. Trifft der Regex zu, stehen die er-
kannten Textstiicke in den Variablen $1, $2, $3 usw. zur Verfiigung:

$name =" /(John) (Smith)/

Enthalt der Scalar $name tatséchlich den Namen John Smith, so steht nach dem Regex-
Test der Vorname in der Variablen $1, der Nachname in $2 zur Verfiigung. In der Regel
wird man einen solchen Test mit Zeichenklassen definieren, um z.B. einen Parser fiir
Konfigurationsdateien zu konstruieren:

$zeile =~ /" (["\:])+:\s+(.%)$/

Dieser Ausdruck trifft auf Zeilen zu, die mit einem oder mehreren Zeichen ausser dem
Doppelpunkt beginnen, dann einen Doppelpunkt und mindestens ein Whitespace-Zei-
chen aufweisen, und mit einer beliebigen Anzahl beliebiger Zeichen enden. Somit werden
z.B. Email: fjoQogris.de oder Option: Wert erkannt. Anschliessend steht in $1 der
Wert Email bzw. Option und in $2 der String fjoQogris.de bzw. Wert.

Ferner lassen sich mit reguldren Ausdriicken auch Texte ersetzen. Hierzu muss der Regex
mit einem kleinen s (fiir substitute) eingeleitet werden:

$zeile =" s/alter Text/neuer Text/

44

5 PROGRAMMIERSPRACHEN 5.1 Perl

Dieser Ausdruck ersetzt das erste Vorkommen von alter Text im Scalar $zeile durch
neuer Text. Mochte man hingegen jedes Vorkommen von alter Text ersetzen, muss
man den Ausdruck als gierig bzw. greedy markieren:

$zeile =" s/alter Text/neuer Text/g

Fasst man im Suchmuster einzelne Textpassagen in runde Klammern, so stehen diese im
Ersatztext iiber die Variablen $1, $2 usw. zur Verfiigung;:

$preis =~ s/(\d+) DM/$1 EUR/g

Mit diesem Ausdruck werden alle Preisangaben wie 19 DM in 19 EUR umgesetzt.

5.1.6. Kontrollstrukturen

Sieht man von einer mehrfachen Fallunterscheidung wie switch/case ab, so bietet Perl alle
aus C bekannten Kontrollstrukturen. Zusétzlich stehen einige Schliisselworte fiir perl-
typische Datenstrukturen (Arrays, Hashes) bereit. Tabelle 4 listet die gebriduchlichsten
Kontrollstrukturen auf.

Tabelle 4: Ausgewéihlte Anweisungen in Perl

Anweisung Beschreibung

for (INIT; CHECK; LOOP) | fithrt die durch BLOCK gegebenen Anweisungen aus,

{ bis CHECK logisch falsch wird; bei Schleifenbeginn

BLOCK wird INIT ausgefiihrt, bei jedem Schleifendurchgang

} LOOP

foreach $SCALAR (@ARRAY) | fiihrt die durch BLOCK gegebenen Anweisungen fiir

{ jedes Element des Arrays @QARRAY aus, das jeweils

BLOCK aktuelle Element steht — falls angegeben — in $SCA-

} LAR zur Verfiigung, sonst in der impliziten Variablen
$_

while (CHECK) { fithrt die durch BLOCK gegebenen Anweisungen aus,

BLOCK solange CHECK logisch wahr ist

}

until (CHECK) {
BLOCK

}

fiihrt die durch BLOCK gegebenen Anweisungen aus,
solange CHECK logisch falsch ist

do { fithrt die durch BLOCK gegebenen Anweisungen aus,
BLOCK solange CHECK logisch wahr ist

} while (CHECK)

do { fithrt die durch BLOCK gegebenen Anweisungen aus,
BLOCK solange CHECK logisch falsch ist

} until (CHECK)

while (($key, $value) =

each (ZHASH)) {
BLOCK

}

each ist ein zustandsbehafteter Operator, der bei je-
dem Zugriff das jeweils néchste Schliissel-/Wertepaar
des Hashes liefert; hier werden die durch BLOCK ge-
gebenen Anweisungen iiber alle Elemente von HASH
iteriert

if (CHECK) {
BLOCK

}

fithrt die durch BLOCK gegebenen Anweisungen aus,
falls CHECK logisch wahr ist

45

5 PROGRAMMIERSPRACHEN 5.1 Perl

Tabelle 4: Ausgewiihlte Anweisungen in Perl (Forts.)

Anweisung Beschreibung

if (CHECK) { fithrt die durch BLOCK1 gegebenen Anweisungen
BLOCK1 aus, falls CHECK logisch wahr ist, sonst die durch
} else { BLOCK?2 dargestellten Anweisungen

BLOCKZ2

}

if (CHECK1) {
BLOCK1

} elsif (CHECK2) {
BLOCK2

}

fiihrt die durch BLOCKI! gegebenen Anweisun-
gen aus, falls CHECK1 logisch wahr ist, sonst
die durch BLOCK2 gegebenen Anweisungen aus,
falls CHECK?2 logisch wahr ist, ..., sonst die durch
BLOCK dargestellten Anweisungen

} elsif (CHECKn) {
BLOCKn

} else {

BLOCK

}

unless (CHECK) { fithrt die durch BLOCK gegebenen Anweisungen aus,
BLOCK falls CHECK logisch falsch ist; unless stellt die Ne-
} gation von if dar, so dass alle o.g. Darstellungen fiir
if auch fiir unless giiltig sind

STATM if (CHECK) fithrt die durch STATM gegebene Anweisung aus,
falls CHECK logisch wahr ist
fiihrt die durch STATM gegebene Anweisung aus,

falls CHECK logisch falsch ist

STATM unless (CHECK)

Funktionale Blocke werden wie in C durch geschweifte Klammern gebildet. Ebenso
miissen Anweisungen mit einem Semikolon abgeschlossen werden. Im Gegensatz zu an-
deren Programmiersprachen gibt es keine explizite Hauptroutine wie z.B. main() in C
oder den Zwang, einen Einsprungspunkt wie in Assembler definieren zu miissen. Statt-
dessen werden die sich nicht in Funktionen (s. Kapitel 5.1.7) befindlichen Anweisungen
sequentiell abgearbeitet (sofern nicht durch Schleifen, Verzweigungen, etc. anders vorge-
geben). Ein triviales, dennoch vollstéindiges Perlskript sieht also wie folgt aus:

#!/usr/bin/perl

$ausgabe = ”hello ,_.world\n” ;
print $ausgabe;

Den Pfadnamen, unter dem das Skript aufgerufen wurde, hinterlegt der Perlinterpreter
in der Variablen $0. Kommandozeilenargumente stehen im Array @ARGV bereit. Vom Be-
triebssystem definierte Umgebungsvariablen finden sich im Hash %ENV. Standardmaéssig
sind die Filehandles STDOUT und STDERR zum Schreiben sowie STDIN zum Lesen geoffnet.

5.1.7. Funktionen

Figene Funktionen werden mit dem Schliisselwort sub definiert. Der eigentliche Funkti-
onsblock wird in geschweifte Klammern gefasst. Verschachtelte Funktionen wie in Pascal
werden nicht unterstiitzt. Wie in C werden Funktionsparameter in runden Klammern
tibergeben. Anzahl und Typ der Funktionsargumente kénnen deklariert werden:

46

5 PROGRAMMIERSPRACHEN 5.1 Perl

sub test ($%)
{

}

sub test2 (%Q)
{

}

Die Funktion test erwartet pro forma zwei Scalare (oder Referenzen, die ja ebenfalls
Scalare sind). test2 erwartet einen Hash und ein Array, oder Referenzen auf derartige
Datentypen. Die tatséichliche Parameteriibergabe findet jedoch immer per Liste statt.
Dieses steht jeder Funktion unter dem Array @_ zur Verfiigung. Werden Arrays oder
Hashes einer Funktion nicht als Referenzen iibergeben, werden diese linearisiert und
ihre Elemente in das Array @_ kopiert. Sofern man also call-by-value verwendet, sind
innerhalb einer Funktion die tibergebenen Werte nicht mehr eindeutig zuordbar. Zudem
entscheidet die Art des Funktionsaufrufes, ob ungiiltige Funktionsparameter zu einem
Fehler fiihren:

test "hallo”, ”welt”; # ok
test ”hallo”; # Fehler
test ("hallo”, "welt”); # ok
test (”hallo”); # Fehler
&test (Phallo”, "welt”); # ok
&test (7 hallo”); # ok!

Daher wird in Perl meist auf eine Parameterdeklaration verzichtet und das Array @_ als
Stack von Funktionsparametern ausgewertet:

sub test3 ()

{
$stringl
$string?2

I
& o

}

Oftmals werden Funktionsparameter per Hash iibergeben:

&drucke_zeile (
text => ”hello ,_world” ,
farbe => "rot”

);
Der entsprechende Funktionsrumpf beginnt dann wie folgt:

sub drucke_zeile ()

{
Y%param = Q@_;
$text = $param{” text” };
$farbe = $param{” farbe” };
}

Dies ist moglich, da Hashes und Arrays aufgrund ihres Listencharakters ineinander umge-
wandelt werden konnen. Die Vorteile dieser Art der Parameteriibergabe sind Flexibilitét
und Transparenz: Weitere Parameter konnen durch Erweiterung des iibergebenen Hash
hinzugefiigt werden, und sowohl beim Aufruf als auch in der Funktion ist erkennbar,
welche Argumente zu iibergeben sind. Riickgabewerte miissen ebenso nicht deklariert
werden. Jede Funktion gibt implizit ein Array zuriick, dass vom Aufrufer als Scalar,
Hash oder einfach als Array interpretiert werden kann. Es ist generell Aufgabe des Pro-
grammierers sicherzustellen, dass sowohl aufrufende als auch aufgerufene Funktion die

47

5 PROGRAMMIERSPRACHEN 5.1 Perl

gleiche Signatur erwarten. Verzichtet man bei einem Funktionsaufruf auf explizite Uber-
gabe jeglicher Parameter, so wird der aufgerufenen Funktion automatisch das Array @_
der aufrufenden Funktion iibergegeben:

&test; # bekommt mein @Q_ ibergeben

Analog zu Datentypen konnen auch Referenzen auf Funktionen gebildet werden:

sub test ()

}
$test_ref = \&test

Der Aufruf muss per Dereferenzierung erfolgen:

&{$test_ref }();
$test_ref —>();

Ebenso ist es moglich, anonyme Funktionen anzulegen:
$test_ref = sub {

b

&{$test_ref}();

Der Scalar $test_ref ist somit eine Referenz auf eine Funktion und kann dementspre-
chend eingesetzt werden.

Im Gegensatz zu C bietet Perl eine umfangreiche Anzahl von internen Funktionen, von
denen einige in Tabelle 5 aufgefiihrt sind.

Tabelle 5: Ausgewéhlte Funktionen in Perl

Funktion Beschreibung
chr ($SCALAR) lieft das ASCII-Zeichen mit der Nummer $SCALAR
hex ($SCALAR) liefert die hexadezimale Zahl $SCALAR als Dezimal-
zahl
index ($SCALAR1, sucht $SCALAR2 in $SCALAR1 (Vorwértssuche),

$SCALAR2, $SCALAR3)

optional ab Position $SCALARS, liefert -1, falls
$SCALAR2 nicht in $SCALAR1 enthalten ist

rindex($SCALAR1,
$SCALAR2, $SCALAR3)

sucht $SCALAR2 in $SCALAR1 (Riickwértssuche),
optional ab Position $SCALARS, liefert -1, falls
$SCALAR2 nicht in $SCALAR1 enthalten ist

1c($SCALAR) liefert $SCALAR in Kleinbuchstaben

uc ($SCALAR) liefert $SCALAR in Grossbuchstaben

length ($SCALAR) liefert die Liange von $SCALAR
reverse($SCALAR), liefert $SCALAR bzw. $ARRAY in umgekehrter Rei-
reverse ($ARRAY) henfolge

substr ($SCALAR1, liefert oder setzt den Teilstring von $SCALARI

$SCALAR2, $SCALAR3)

ab Position $SCALAR2, optional mit maxima-
ler Léangenangabe $SCALAR3; substr("test",
1) liefert est, substr("test", 1, 2) liefert es,
substr($name, 0, 3) = "Abc" ersetzt die ersten
drei Zeichen in $name durch Abc

48

5 PROGRAMMIERSPRACHEN 5.1 Perl

Tabelle 5: Ausgewéhlte Funktionen in Perl (Forts.)

Funktion

Beschreibung

split ($SCALAR1,
$SCALAR2, $SCALAR3)

teilt $SCALAR2 an den durch den Regex in $SCA-
LART1 gegebenen Stellen auf (optional limitiert durch
die Anzahl in $SCALARS) und liefert ein Array mit
den verbleibenden Teilstrings

pop @ARRAY

entfernt das letzte Element von @ARRAY und liefert
es zuriick

push ©@ARRAY, $SCALAR

fiigt $SCALAR an das Ende von @ARRAY hinzu

shift ©@ARRAY

entfernt das erste Element von @ARRAY und liefert
es zuriick; fehlt die Angabe eines Arrays, wird das
erste Element vom Array @_ (s. Kapitel 5.1.7) entfernt

unshift ©@ARRAY, $SCALAR

fiigt $SCALAR an den Anfang von @ARRAY hinzu

join($SCALAR, @ARRAY)

liefert @ARRAY als Zeichenkette, wobei alle Ele-
mente mit $SCALAR verbunden sind

map { BLOCK } @ARRAY

fithrt BLOCK fiir jedes Element von @QARRAY aus;
innerhalb von BLOCK kann auf das aktuelle Array-
element lesend und schreibend per Variable $_ zuge-
griffen werden; Riickgabewert ist das evtl. modifizier-
te Array

sort { BLOCK } @ARRAY

liefert @QARRAY textuell sortiert; optional wird
fiir jeden Vergleich (Quicksort-Algorithmus) BLOCK
ausgefiihrt, der jeweils zwei zu vergleichende Elemen-
te in den Variablen $a und $b erhélt und -1, 0 oder 1
zuriickliefern soll, wenn $a kleiner, gleich bzw. grésser
$b ist

keys /HASH

liefert alle Schliissel des Hashes als (unsortiertes) Ar-
ray

values JJHASH

liefert alle Werte des Hashes als (unsortiertes) Array

delete $HASH{$ELEM}

loscht das durch den Schliissel $ELEM dargestellte
Schliissel-/Wertepaar aus dem Hash

exists $HASH{$ELEM}

liefert logisch wahr, falls der Schliissel $ELEM im
Hash %HASH existiert

binmode (FILEHANDLE) zeigt an, dass die durch FILEHANDLE dargestellte
Datei Bindrdaten enthélt

close (FILEHANDLE) schliesst die durch FILEHANDLE dargestellte Datei

flock(FILEHANDLE, sperrt die durch FILEHANDLE dargestellte Datei

$SCALAR)

o exklusiv, wenn $SCALAR 2 ist (pro Datei darf
nur ein Prozess gleichzeitig eine exklusive Sper-
re halten) (Write-Lock)

e zum Schreiben, wenn $SCALAR 1 ist (pro Da-
tei diirfen unendlich viele Prozesse gleichzeitig
ein solches Read-Lock halten, solange keine ex-
klusive Sperre vorliegt);

hebt eine Dateisperre auf, wenn $SCALAR den Wert
8 hat

49

5 PROGRAMMIERSPRACHEN

5.1 Perl

Tabelle 5: Ausgewéhlte Funktionen in Perl (Forts.)

Funktion Beschreibung

die($SCALAR) beendet die Ausfiihrung des Skripts mit einem Fehler,
der optional per $SCALAR erliutert werden kann

print (CARRAY) gibt alle Elemente von @ARRAY aus

open(FILEHANDLE, offnet die durch $SCALAR angegebene Datei zum

$SCALAR) Lesen

open (FILEHANDLE, ">",
$SCALAR)

offnet die durch $SCALAR angegebene Datei
zum Beschreiben; alternativ kann die Syntax
open (FILEHANDLE, ">DATEINAME") verwendet wer-
den

caller ($SCALAR)

liefert Informationen iiber die aufrufende Funktion,
optional iiber die aufrufende Funktion, falls $SCA-
LAR 1 ist, iiber die Grosselternfunktion, falls $SCA-
LAR 2 ist, usw.

eval (BLOCK)

fiihrt die durch BLOCK gegebenen Anweisungen aus,
bricht jedoch bei Fehlern nicht das Skript ab, sondern
stellt die Fehlerbeschreibung in der Variablen $@ be-
reit

exit ($SCALAR)

beendet das Skript mit dem optionalen, durch $SCA-
LAR gegebenen numerischen Fehlercode

next

springt innerhalb einer Schleife (for, while, usw.)
zum néchsten Durchgang

last

verlédsst eine Schleife (wie break in C)

system($SCALAR)

fithrt den durch $SCALAR gegebenen Systembefehl

aus und liefert dessen Ausgabe

time ()

liefert die Sekunden seit dem 1. Januar 1970 00:00
Uhr (der sogenannten Epoch)

localtime ($SCALAR)

liefert den iibergebenen Epoch-Zeitwert als lokale
Zeit in Form eines Arrays, das Sekunde, Minute,
Stunde, Tag, Monat, Jahr, Wochentag, Jahrestag und
ein Flag fiir die Sommerzeit darstellt

-r $SCALAR

liefert logisch wahr, falls die Datei $SCALAR lesbar
ist

-w $SCALAR

liefert logisch wahr, falls die Datei $SCALAR schreib-
bar ist

-x $SCALAR

liefert logisch wahr, falls die Datei $SCALAR
ausfiithrbar ist

-e $SCALAR

liefert logisch wahr, falls die Datei $SCALAR exi-
stiert

-z $SCALAR

liefert logisch wahr, falls die Datei $SCALAR 0 Byte
gross ist

-s $SCALAR

liefert logisch wahr, falls die Datei $SCALAR nicht 0
Byte gross ist

-d $SCALAR

liefert logisch wahr, falls $SCALAR ein Verzeichnis
ist

-f $SCALAR

liefert logisch wahr, falls $SCALAR eine Datei ist

50

5 PROGRAMMIERSPRACHEN 5.1 Perl

5.1.8. Module und Packages

Perlmodule stellen Funktionsbibliotheken dar. Sie werden wie Perlskripte in Textda-
teien gepspeichert, jedoch mit der Dateiendung .pm. Ein Modul enthélt i.d.R. keinen
Programmcode auf der Hauptebene, sondern lediglich Funktionen und ggf. globale Va-
riablen. Der Name eines Moduls und somit der Namensraum wird {iber das Schliisselwort
package festgelegt.

#!/usr/bin/perl
package Fahrzeug;

Die Shebangzeile am Anfang mag unniitz erscheinen, jedoch erkennt man so unmittelbar,
dass es sich um eine Perldatei handelt. Zudem kann man versehentlich ein Modul aufrufen
(z.B. weil man es fiir ein Skript hélt). Bei fehlender Shebangzeile jedoch (und da es
sich um keine binére, vom Kernel als ausfithrbares Programm erkannte Datei handelt),
wird die Shell (s. Kapitel 5.2) versuchen, die enthaltenen Befehle zu interpretieren, was
meistens nicht erwiinscht ist und zudem zu Nebeneffekten fithren kann. Wie in Java kann
eine Namensraumbhierarchie aufgebaut werden, um Module namentlich zu biindeln:

#!/usr/bin/perl
package Fahrzeug:: Auto;

Module miissen als letzte Anweisung einen logisch wahren Wert liefern (z.B. ”1”), um
ihr fehlerfreies Einbinden in das aufrufende Skript zu signalisieren. Wiirde im Modul
ein Fehler festgestellt werden, bricht die Importfunktion ab und beendet das Skript. Ein
Modul hat daher immer den folgenden Aufbau:

#!/usr/bin/perl
package Fahrzeug:: Auto;
1

Es ist moglich, in einer Moduldatei mehrere solcher Packages zu definieren. Dieses sollte
man jedoch vermeiden, da das Schliisselwort use zum Einbinden eines Moduls nicht
den bei package angegebenen Namen anspricht, sondern den Dateipfad. Im folgenden
Beispiel wird Perl versuchen, eine Datei Auto.pm im Verzeichnis Fahrzeug einzubinden:

#!/usr/bin/perl

use Fahrzeug :: Auto;

Perl sucht per default Module in allen Verzeichnissen, die im Array @INC angegeben
sind. Hierzu zéhlen u.a. das aktuelle Verzeichnis und unter unixartigen Betriebssyste-
men die Verzeichnisse /usr/lib/perl und /usr/local/lib/perl. Daher muss Auto.pm
im Unterverzeichnis Fahrzeug des aktuellen Verzeichnisses liegen, oder unterhalb eines
anderen, in @INC aufgefiihrten Verzeichnisses. Ist dies nicht moglich, und liegt das Modul
Auto.pm z.B. im Verzeichniss /home/felix/1ib, so muss dieses dem Array QINC hin-
zugefiigt werden. Ein simples push @INC, "/home/felix/1ib" oder auch ein unshift
@INC, "/home/felix/lib" fithren nicht zum Erfolg, da zu deren Zeitpunkt das Skript
schon in Bytecode kompiliert wurde und keine fehlenden Module aufweisen darf. Daher
wird das perleigene Modul 1ib verwendet, dem zusétzliche, von @INC abweichende Pfade
beim Einbinden als Liste iibergeben werden:

#!/usr/bin/perl

o1

5 PROGRAMMIERSPRACHEN 5.1 Perl

use lib ” /home/felix /lib”;
use Fahrzeug:: Auto;

Somit kann die Datei Auto . pm im Verzeichnis /home/felix/1lib/Fahrzeug gefunden und
eingebunden werden. Wegen dieser Namensabhéngigkeiten zwischen Dateipfad, Modul
und Package sollte ein Modul immer nur ein Package enthalten, dessen Name gleich
dem Modelnamen ist. So sollte in der Datei bzw. im Modul Fahrzeug/Auto.pm nur
das Package Fahrzeug: :Auto vorliegen. Der Zugriff auf Funktionen und Variablen in
Modulen erfolgt iiber den Namen ihres Packages:

use Fahrzeug:: Auto; # Modul einbinden

$Fahrzeug :: Auto:: meldung = ” hello , _world” ;
&Fahrzeug :: Auto:: ausgabe ();

5.1.9. Objektorientiertes Programmieren

Die in Kapitel 5.1.8 dargestellten Module dienen in Perl als Grundlage fiir objektori-
entiertes Programmieren. Jedes Package kann eine Klasse darstellen, sofern es einen
Konstruktor besitzt und seine Funktionen als Memberfunktionen programmiert sind. Im
Gegensatz zu anderen Programmiersprachen ist der Name des Konstruktors frei wihlbar.
Ublich ist jedoch new:

use Fahrzeug :: Auto;

$auto = Fahrzeug:: Auto—>new(Farbe => ”"rot”, PS => 150);

Hier wird zunéchst das Modul Fahrzeug: : Auto bzw. die Datei Fahrzeug/Auto.pm, wel-
che in einem in @INC aufgefiihrten Verzeichnis liegen muss, eingebunden. Dieses Mo-
dul enthélt das Package Fahrzeug: : Auto, in dem wiederum die Funktion new definiert
ist. Diese Funktion dient als Konstruktor. Ihr Riickgabewert ist ein Objekt vom Typ
Fahrzeug: : Auto. Intern wandelt Perl den Aufruf von new in folgende Anweisung um:
$auto = Fahrzeug:: Auto:: new(

”Fahrzeug :: Auto” ,

Farbe => "rot”,

PS => 150
);
Jeder Konstruktor bekommt den Klassennamen als ersten Parameter iibergeben. Das
zuriickgelieferte, neue Objekt ist eine Hashreferenz, die durch die Funktion bless als
eine Instanz von Fahrzeug: : Auto deklariert wurde:

package Fahrzeug:: Auto;

sub new ()

{ my $Klasse = shift;
my %Object = ();
my $Object_ref = bless(\%Object, $Klasse);
return $Object_ref;

}

52

5 PROGRAMMIERSPRACHEN 5.1 Perl

Der Konstruktor new im Package Fahrzeug: : Auto iibernimmt zunéchst per Aufruf von
shift, welches ohne Parameter auf das Array @_ wirkt, den Namen der Klasse. Ansch-
liessend wird ein leerer Hash namens %0bject angelegt, der durch den Aufruf von bless
als Instanz von Fahrzeug: : Auto markiert wird. Die Funktion bless (engl. fiir segnen,
man erkennt den subtilen Humor im Sprachdesign von Perl) erwartet zwei Parameter,
ndmlich eine Referenz auf die zu segnende bzw. zu klassifizierende Variable und den
Namen der Klasse. Der Riickgabewert von bless und des Konstruktors ist die klassi-
fizierte Referenz. Membervariablen wie z.B. Farbe oder PS werden i.d.R. mittels eines
temporédren Hashes initialisiert:

package Fahrzeug:: Auto;

sub new ()

{

my $Klasse = shift;
my %Object = ();

my %Param = Q_;

foreach my $Variable (”Farbe”, "PS”) {
$Object{$Variable} = $Param{$Variable };

}

my $Object_ref = bless(\%Object, $Klasse);

return $Object_ref;

}

Dies ist moglich, da das Array @_nach dem Aufruf von shift nur noch Schliissel-/Werte-
paare wie Farbe => rot enthilt. Durch die mit foreach gebildete Schleife werden nur
gewiinschte Variablen in das Objekt iibernommen. Memberfunktionen werden analog
zum Konstruktor iiber das Objekt aufgerufen und erhalten dieses als ersten Parameter:

$auto—>lackieren (Farbe => ”blau”);

Da $auto eine klassifizierte Variable ist, wandelt Perl den Aufruf um:

Fahrzeug:: Auto:: lackieren ($auto, Farbe => ”blau”);

Daher sollte die Funktion lackieren (ein typischer Setter) wie folgt aussehen:

sub lackieren ()

{
my $Object_ref = shift;
my %Param = Q_;
foreach my $Variable (”Farbe”) {
$Object_ref —>{$Variable} = $Param{$Variable };
}
}

Der Destruktor einer Klasse muss zwingend den Namen DESTROY haben, da er vom
Garbagecollector aufgerufen wird, sobald das Objekt nicht mehr verwendet wird. Der
genaue Zeitpunkt, zu dem ein Destruktor aufgerufen wird, ist nicht vorhersagbar. Daher
sollte er keine laufzeitkritischen Aufgaben erfiillen. Sieht man von diesen Besonderheiten
ab, stellt sich ein Konstruktor wie eine normale Klassenfunktion dar, die bis auf die
Objektreferenz parameterlos aufgerufen wird:

sub DESTROY ()

my $Object_ref = shift;

93

5 PROGRAMMIERSPRACHEN 5.1 Perl

aufrdaumen

}

Im Gegensatz zu anderen objektorientierten Sprachen kennt Perl keinen strengen Verer-
bungsmechanismus. Stattdessen teilt man dem Interpreter mit, in welchen Packages zu
suchen ist, falls eine Methode nicht im aktuellen Paket definiert ist. Hierzu hinterlegt
man im globalen Array @ISA (lies: is a = ist ein) die Namen aller Superklassen:

package Fahrzeug:: Auto;

our QISA = (”Fahrzeug”);

Ruft man nun eine nicht im Package Fahrzeug: : Auto definierte Methode auf, so ver-
sucht Perl; sie im Package Fahrzeug zu finden. Natiirlich kann das Array @ISA mehrere
Superklassen enthalten, wodurch man Mehrfachvererbung implementiert. Hierbei wird
der Reihe nach in jedem aufgefiihrten Package die gewiinschte Funktion gesucht, bis
diese gefunden ist. Um auch die Membervariablen der Superklasse zu erhalten, sollte
der Konstruktor von Fahrzeug: : Auto angepasst werden. Hierzu wird die Pseudoklasse
SUPER verwendet, iiber die der Konstruktor der Superklasse angesprochen wird:

package Fahrzeug:: Auto;
our QISA = (”Fahrzeug”);

sub new ()

{
my $Klasse = shift;
my %Param = Q_;
my $Object_ref = SUPER—>new(%Param);
foreach my $Variable (”Farbe”, ?PS”) {
$Object_ref —>{$Variable} = $Param{$Variable };
}
$Object_ref = bless($Object_ref, $Klasse);
return $Object_ref;
}

Dem Konstruktor von Fahrzeug werden alle Parameter iibergeben, damit dieser die
Membervariablen der Instanz von Fahrzeug initialisieren kann. Der Aufruf von bless
im oben gezeigten Konstruktor von Fahrzeug: : Auto ist notwendig, damit $0bject_ref
nicht als Typ Fahrzeug, sondern Fahrzeug: : Auto klassifiziert wird.

5.1.10. Pragmatisches Perl

Mit den Modulen strict und warnings lasst sich ein sauberer Programmierstil er-
zwingen. Verwendet man warnings, so muss jeder Variablen vor ihrem ersten lesenden
Zugriff ein Wert zugewiesen sein. Ausserdem miissen interne Perlfunktionen wie z.B.
time () oder split() ihre Riickgabewerte an eine Variable liefern. So beinhaltet folgen-
des Beispiel gleich drei Fehler:

#!/usr/bin/perl

use warnings;

54

5 PROGRAMMIERSPRACHEN 5.1 Perl

localtime ($jetzt);

Erstens wird localtime () ohne Riickgabe an eine Variable verwendet. Zweitens wurde
$jetzt kein Wert zugewiesen. Drittens wird $jetzt nur ein einziges Mal verwendet.
Die durch das Modul warnings erkannten Fehler produzieren nur Warnungen auf der
Standardfehlerausgabe. Verwendet man ein derart fehlerhaftes Perlskript jedoch als CGI-
Programm oder als per mod_perl aufgerufenes Modul in einem Webserver, so werden
diese Warnungen an den Browser des Besuchers geschickt und kénnen u.U. die Ausgabe
der Webseite beeinflussen. Setzt man hingegen strict ein, so fithren die durch dieses
Modul erkannten Fehler zum Abbruch des Skriptes. Hierzu zédhlen globale Variablen,
die nicht per my oder our deklariert wurden, und die Zuweisung von Zeichenketten, die
weder in Anfithrungsstrichen notiert sind noch Funktionsnamen darstellen:

#!/usr/bin/perl
use strict;

sub HelloUniverse ()
{

}

$jetzt = time();

return ”hello ,_universe” ;

my $varl = HelloWorld;
my $var2 = HelloUniverse;

Das gezeigte Skript erzeugt zwei Fehler: Zum einen wird der Scalar $jetzt nicht dekla-
riert. Zum anderen stellt HelloWorld keinen Funktionsnamen dar. Die Variable $var?2
hingegen enthélt die Zeichenkette hello, universe, da HelloUniverse eine giiltige
Funktion darstellt und eben jenen String liefert. Fiir Perlskripte im produktiven Einsatz
sollten immer beide Module strict und warnings eingebunden werden, um unsauberen
Programmierstil und somit ”versteckte” Fehler von vornherein zu unterbinden.

5.1.11. Plain Old Documentation

Mit dem Plain Old Documentation (POD)-Format werden speziell gekennzeichnete Ab-
schnitte in Perl-Skripten und -Modulen als Dokumentationstext interpretiert. Mit ex-
ternen Programmen wie pod2html oder pod2text werden aus jenen Abschnitten Quell-
codedokumentationen als HTML-Seiten, Textdateien, o.i. ausgegeben'®. POD-Schliis-
selworter miissen mit einem Gleichheitszeichen und am Anfang einer Zeile beginnen.
Zum Abschluss einer POD-Anweisung muss eine Leerzeile folgen. Ein Dokumentations-
abschnitt wird explizit mit =pod oder implizit mit jedem POD-Schliisselwort eingeleitet.
Zum Verlassen eines POD-Blocks muss =cut verwendet werden. Mit =headl bis =head4
stehen unterschiedlich markante Formatierungsanweisungen fiir Kopfzeilen bereit. Ein
einfaches Beispiel sieht wie folgt aus:

#!/usr/bin/perl

=headl helloworld . pl

Dieses Programm gibt ”hello ,.world” aus.
=cut

print ”hello ,_world\n”;

15ygl. shnliche Systeme wie z.B. javadoc

95

5 PROGRAMMIERSPRACHEN 5.1 Perl

Aufziahlungen werden per =over und =back begonnen bzw. beendet. Die einzelnen Punk-
te einer Liste werden mit =item angefiihrt. Zusétzlich stehen folgende Formatierungsan-
weisungen zur Verfiigung:

I<TEXT> druckt TEXT kursiv

B<TEXT> druckt TEXT fett

C<TEXT> druckt TEXT in einer Proportionalschriftart
S<TEXT> verhindet, dass TEXT umgebrochen wird
F<DATEINAME> zur einheitlichen Darstellung von Dateinamen

L<LINK> falls LINK eine URL darstellt wie z.B. http://www.fh-bielefeld.de/, wird
ein entsprechender externer Link erzeugt; ansonsten wird ein Link zu der angege-
benen lokalen Unix-Manpage erzeugt

Mit =begin und =end koénnen Abschnitte definitert werden, die nur eine Klasse von
POD-Parsern auswertet. So wird folgendes Beispiel nur von pod2text dargestellt:

=begin text
Dies erscheint nur in einer Textdatei.

=end text

Abbildung 9 zeigt die per pod2html erzeugte HITML-Dokumentation in einem Webbrow-
ser, die aus folgendem Perl-Skript erzeugt wurde:

#!/usr/bin/perl

=headl helloworld . pl

=head2 Aufruf
F<./helloworld . pl>

=head2 Eingabe

I<keine>

=head2 Ausgabe

I<hello, world>

=head2 Bugs

=over

=item Perl wird bendtigt.

=item Nicht lauffiahig unter DOS.
=back

=head2 Literatur

L<http://de. wikipedia.org/wiki/Hallo—Welt—Programm>

=begin text

o6

5 PROGRAMMIERSPRACHEN 5.2 Shellscripting

Benutze pod2text, damit dieser Abschnitt in der Dokumentation erscheint.
=end text

=cut

print ”hello ,_world\n”;

| s\O0 podtest.pl) |

L(:J' fé‘ @ file:/ f /Users/FIO/Desktop/podtest.himl ¥ | |=

+ helloworld.pl
o Aufruf

o Eingabe
o Ausgabe

o Bugs
o Literatur

helloworld.pl
Aufruf

Jhelloworld pl
Eingabe
keine
Ausgabe
hello, world
Bugs

Perl wird benitigt.
Nicht lauffihig unter DOS.

Literatur

htip://de.wikipedia.org/wiki/Hallo-Welt-Programm

Abbildung 9: Per pod2html erzeugte HTML-Dokumentation des Quellcodes

5.2. Shellscripting

Die Shell ist nicht nur die primére Schnittstelle zwischen Mensch und (unixartigem)
Betriebssystem, sondern auch eine einfache Programmiersprache, die je nach Shell mehr
oder weniger weit iiber herkémmliche Stapelverarbeitung hinaus geht. Auf einem

FreeBSD-System sind standardméissig die tcsh, eine leicht an die Syntax von C angelehn-
te Shell, und die sh installiert. Letztere wird als Interpreter in Systemskripten verwendet,
die beim Starten und Stoppen des Betriebssystems wichtige Aufgaben iibernehmen, z.B.
das Konfigurieren von Netzwerkschnittstellen oder das kontrollierte Herunterfahren von
Serverprozessen. Shellskripte und in der Shell (als interaktives Programm) eingegebene
Befehle sind &dquivalent. Beide stellen Befehlsfolgen dar, die interpretiert und ggf. aus-
gefithrt werden, z.B. wenn es sich um den Aufruf eines (externen) Programmes handelt.
Da Perl einige Konzepte aus der Shellprogrammierung iibernommen hat, erscheinen di-

o7

5 PROGRAMMIERSPRACHEN 5.2 Shellscripting

verse Elemente vertraut. Wie jedes andere nicht-binére Programm unter Unix sollte auch
ein Shellskript mit einer Shebang-Zeile eingeleitet werden:

#!/bin/sh
Dies ist ein Kommentar

Kommentare werden wie gezeigt per # eingeleitet. Analog zu Perl existiert keine Haupt-
routine. Ansonsten miisste man diese auch im interaktiven Betrieb definieren. Befehle
werden entweder per Semikolon oder per Zeilenvorschub voneinander getrennt. Die Shell
/bin/sh unterstiitzt lediglich einen einfachen Datentyp, der Zeichenketten oder nume-
rische Werte aufnehmen kann (vgl. Scalare in Perl). Sie miissen nicht deklariert werden
und sind ab ihrer ersten Verwendung global definiert. Ausnahme bilden per local mar-
kierte Bezeichner innerhalb von Funktionen. Variablen, denen ein Wert zugewiesen wird,
werden ohne Prefix notiert. Soll der Wert abgerufen werden, so muss ein Dollarzeichen
vorangestellt werden:

#!/bin/sh

meldung="hello ,_world”
echo $meldung

Zusétzlich kann der Variablenname in geschweifte Klammern gefasst werden. Dies ist

sinnvoll, wenn Zeichen folgen, die auch als Teil des Variablennamens interpretiert werden
konnten:

#!/bin/sh

meldung="This_is_just._a_test”
echo ${meldung}script

Innerhalb einfacher Anfithrungsstriche findet keine Variablenexpansion statt. So gibt
folgendes einfach nur $meldung aus (statt hello, world):

#!/bin/sh

meldung="hello , _world”
echo ’$meldung’

Der Backslash dient zum Maskieren von Metazeichen:
#!/bin/sh

2 9

meldung="Perl_is._\” funny\
echo $meldung

Dieses Beispiel gibt wie erwartet Perl is "funny" aus. Vorbelegte Variablen sind $0,
$1, $2, usw. In $0 ist der Name des Skriptes hinterlegt, in den Variablen ab $1 etwaige
Kommandozeilenparameter bzw. innerhalb einer Funktion die ihr iibergebenen Werte.
Per Aufruf von unset meldung (ohne Dollarzeichen vor dem Namen der Variablen) wird
die Variable in den nicht initialisierten Zustand zuriickversetzt. Zusétzlich existieren die
in Tabelle 6 aufgefithrten Arten von Wertezuweisungen.

o8

5 PROGRAMMIERSPRACHEN 5.2 Shellscripting

Tabelle 6: Bedingte Wertezuweisungen in der Shellprogrammierung

Zuweisung Beschreibung

ziel=$quelle:-$default Weist der Variablen $ziel den Wert von $quelle zu,
falls quelle nicht leer ist und nicht die leere Zeichen-
kette darstellt; sonst wird der Wert von $default
zugewiesen

ziel=$quelle:=$default Weist der Variablen $ziel den Wert von $quelle zu,
falls quelle nicht leer ist und nicht die leere Zeichen-
kette darstellt; sonst wird der Wert von $default
zunéchst $quelle zugewiesen und dieser schliesslich
an $ziel geliefert

ziel=$quelle:7$fehler Weist der Variablen $ziel den Wert von $quelle
zu, falls quelle nicht leer ist und nicht die leere Zei-
chenkette darstellt; sonst bricht die Ausfithrung des
Skriptes ab, optional mit dem in $fehler hinterleg-
ten Text

ziel=$quelle:+$default Gegenteil zu ziel=$quelle:-$default: weist der
Variablen $ziel den Wert von $quelle zu, falls
quelle leer ist oder die leere Zeichenkette darstellt;
ansonsten (wenn $quelle also einen String linger 0
Buchstaben enthilt) wird der Wert von $default zu-
gewiesen

Die Syntax von Kontrollstrukturen ist entfernt an Pascal angelehnt:
#!/bin/sh
name="Hans”

if [$name = "Peter”]; then
echo ”Hallo_Peter”
elif [$name = ”Hans”
echo ”Hallo_Hans”
else
echo ”Hallo_Unbekannter”
fi

Dieses Konstrukt priift, ob der Name Peter oder Hans lautet und gibt bei keiner Uber-
einstimmung Hallo Unbekannter aus. Wesentlich eleganter ist eine Fallunterscheidung.

Auch hierbei wird das einleitende Schliisselwort case in umgekehrter Schreibweise (esac)
als Abschluss des Befehls erwartet:

#!/bin/sh
name="Hans”

case $name in
Peter)
echo ”"Hallo_Peter”
Hans)
echo ”"Hallo._Hans”
*)

echo ”"Hallo_Unbekannter”

99

5 PROGRAMMIERSPRACHEN 5.2 Shellscripting

esac

Schleifen werden per while oder for gebildet. Letztere dhnelt jedoch einer mit foreach
programmierten Schleife in Perl:

#!/bin/sh

for i in ”"Hans” ”Peter” ”Felix”; do
echo ”Hallo.$i”

done

Der Befehl for iteriert iiber jedes Element der Liste, auf die er angewendet wird, so dass
obiges Beispiel der Reihe nach Hallo Hans, Hallo Peter und Hallo Felix ausgibt. Das
folgende Beispiel gibt die Zahlen von 0 bis 9 aus. Der hierzu notwendige arithmetische
Ausdruck wird per zweifacher runder Klammern gebildet:

#!/bin/sh
i=0

while [$i —1t 10]; do

echo 7 8$i”

i=$((i+1))
done
Die Befehle if und while werten generell die Riickgabe eines Programmes aus. Been-
det sich ein Programm mit dem Status 0, wird dies als logisch wahr gewertet, jeder
andere Riickgabewert als falsch. Tatséchlich war der Operator [in alten Unixversio-
nen ein externes Programm. Die Shell in aktuellen FreeBSD-Versionen verfiigt hingegen
iiber diesen Operator und muss fiir Vergleiche wie oben gezeigt kein externes Programm
aufrufen. Aus Kompatibilitdtsgriinden liegt im Verzeichnis /bin ein Programm namens
[, welches identisch mit dem ebenfalls dort befindlichen Programm test ist. Die von
diesen Programmen bzw. Operatoren angebotenen Tests zeigt Tabelle 7. Sie dhneln den
Funktionen -r bis -f in Perl (s. Tabelle 5).

Tabelle 7: Ausgewéhlte Tests des Shelloperators [bzw. des Programmes test

Test Beschreibung

-d VERZEICHNIS VERZEICHNIS existiert und ist ein Verzeichnis

-e DATET DATEI existiert

-f DATET DATEI existiert und ist eine Datei

-r DATET DATEI existiert und ist lesbar

-s DATET DATEI existiert und ist grosser als 0 Byte

-w DATET DATEI existiert und ist schreibar

-x DATET DATEI existiert und ist ausfithrbar

-n STRING die Zeichenkette in STRING hat nicht die Lénge 0

-z STRING die Zeichenkette in STRING hat die Lénge 0

STRING1 = STRING2 die Zeichenketten STRINGI und STRINGZ2 sind
identisch

STRING1 '= STRING2 die Zeichenketten STRINGI1 und STRINGZ2 sind
nicht identisch

INTEGER1 -eq INTEGERZ2 die Zahlen INTEGER1 und INTEGER2 sind iden-
tisch

60

5 PROGRAMMIERSPRACHEN 5.2 Shellscripting

Tabelle 7: Ausgewihlte Tests des Shelloperators [bzw. des Programmes test (Forts.)

Test Beschreibung

INTEGER1 -ne INTEGER2 die Zahlen INTEGER1 und INTEGERZ? sind nicht
identisch

INTEGER1 -gt INTEGER2 die Zahl INTEGER1 ist grosser INTEGER?2

INTEGER1 -ge INTEGERZ2 die Zahl INTEGER1 ist grosser oder gleich INTE-
GER2

INTEGER1 -1t INTEGER2 die Zahl INTEGER1 ist kleiner INTEGER2

INTEGER1 -le INTEGERZ2 die Zahl INTEGER]1 ist kleiner oder gleich INTE-

GER2

AUSDRUCK1 -a

AUSDRUCK2

beide Ausdriicke sind wahr, z.B. [$vorname
"Hans" -a $nachname = "Meier"]

AUSDRUCK1 -o

AUSDRUCK2

einer der Ausdriicke ist wahr, z.B. [$vorname
"Hans" -o $vorname = "Peter"]

Die Funktion eval fungiert als Interpreter im Interpreter. Sie wertet den ihr {iber-
gebenen String als Shellskript aus. Dies wird héufig zur indirekten Adressierung und
aufgrund fehlender komplexer Datenstrukturen verwendet:

#!/bin/sh

$benutzer="1"

$User_0_Name="Hans._Meier”

$User_1_Name="Peter _Maier”

eval ”ausgabe=\$User_${benutzer} Name”

echo S$ausgabe

Dieses Skript gibt Peter Maier aus. Beim Aufruf von eval wird die Variable $benutzer
expandiert, so dass eval die Zeichenkette "ausgabe=$User_1 Name" erhilt. Das Dol-
larzeichen nach dem Gleichheitszeichen wird nicht als Variablenprefix gewertet, da es
maskiert ist. Die Variable $User_1 Name wurde zuvor mit dem Wert Peter Maier be-
legt, so dass eval diesen String in ausgabe kopiert. Wiirde man die Variable $benutzer
mit O initialisieren, so gdbe das obige Beispiel den Namen Hans Meier aus, bei allen
anderen Werte eine leere Zeichenkette. Funktionen werden relativ einfach definiert und

aufgerufen:
#!/bin/sh

ausgabe ()

{

echo ”hello ,_world”

}

ausgabe

Parameter werden in den Variablen $1, $2, usw. iibergeben:

#!/bin/sh

print_name

{

0

echo ”Vorname:..$1”
echo ”"Nachname:._$2”

61

5 PROGRAMMIERSPRACHEN 5.2 Shellscripting

return 0

}

print_name ”Hans” ” Meier”

Riickgabewerte von Funktionen sind auf einen numerischen Statuscode von 0 bis 255
beschrankt, der in der aufrufenden Funktion in der Variablen $7 abgefragt werden kann.
Ein Shellskript kann weitere Shellskripte einbinden und auf deren Variablen und Funk-
tionen zugreifen:

#!/bin/sh
. /usr/local/etc/functions.sh

Das Beispiel bindet (engl. to source) die Datei /usr/local/etc/functions.sh lexika-
lisch an der angegebenen Stelle ein. Etwaiger Code auf der Hauptebene der eingebunde-
nen Datei wird unmittelbar ausgefiihrt.

62

6 AUSZEICHNUNGSSPRACHEN

6. Auszeichnungssprachen

6.1. XML

Die Extensible Markup Language (XML) ist eine Metasprache. Mit ihrer Hilfe kénnen
eigene Formate zum Transport von Daten definiert werden. XML verhélt sich zu einem
selbst definierten Transportformat nahezu wie die Backus-Naur-Form (BNF) zu einer in
BNF spezifizierten Programmiersprache. In der Praxis wird der Begriff XML-Dokument
verwendet, wenn man Daten diskutiert, die in einem XML-Format transportiert werden.
Mit XML koénnen ausschliesslich hierarchische Formate definiert werden. Sie miissen
genau ein Wurzelelement (root node) besitzen, welches beliebig viele und beliebig tief
verschachtelte Kindelemente beinhalten darf. Elemente bestehen aus einem 6ffnenden
und einem schliessenden Tag, die Daten und/oder weitere (Kind-)Elemente umfassen.
Tags werden in spitze Klammern gefasst:

<buch>

Das gezeigte Tag 6ffnet das Element buch. Das zugehorige schliessende Tag wird per
Schrigstrich gebildet:

</buch>

Enthalt ein Element keine Kindelemente, kann die Folge von 6ffnendem und schliessen-
dem Tag wie folgt abgekiirzt werden:

<buch />

Elementnamen sind frei wahlbar, miissen jedoch mit einem Buchstaben, Unterstrich
oder Doppelpunkt beginnen und mit alphanumerischen Zeichen, Punkt, Bindestrich,
Unterstrich oder Doppelpunkt fortgesetzt werden. Zudem diirfen Elementnamen nicht
mit XML in jedweder Gross-/Kleinschreibung anfangen. Tags miissen in der richtigen,
LIFO-artigen Reihenfolge geschlossen werden. Folgendes Beispiel ist ungiiltig:

<buch>

<autor>

</buch>
</autor>

XML-Dokumente miissen mit einer sogenannten XML-Deklaration eingeleitet werden:

<?xml version="1.0"7>

Allgemein stellt die XML-Deklaration eine sogenannte Processing Instruction (PI) dar.
Sie werden per <7 eingeleitet und per 7> abgeschlossen. Auf diese Art lassen sich dem
XML-Parser Anweisungen iibergeben. Entspricht ein XML-Dokument den bisher erldu-
terten Regel, ist es wohlgeformt. Attribute sind ergénzende Angaben zu Elementen, die
im 6ffnenden Tag angegeben werden. Fiir ihre Bezeichnung gelten die gleichen Regeln
wie fiir Elementnamen:
<?xml version="1.0”7>
<buecher>

<buch preis="74,95_EUR">

<titel>Internet Routing Architekturen</titel>

</buch>
</buecher>

Einrtickungen am Zeilenanfang sind primér kosmetischer Natur. Zu beachten ist aller-
dings, dass sie beim Parsen eines XML-Dokumentes nicht zwangsweise geloscht werden.
Es ist dem XML-Parser iiberlassen, z.B. den Zeilenvorschub und jegliche Leerzeichen zwi-
schen </titel> und </buch> zu ignorieren. Ein Programmierer sollte dies beim Schrei-
ben einer XML verarbeitenden Anwendung auf jeden Fall beriicksichtigen. Daher ist es

63

6 AUSZEICHNUNGSSPRACHEN 6.1 XML

auch ratsam, Elementwerte wie den gezeigten Buchtitel ohne voran- oder nachgestellte
Whitespaces zu notieren. Attribut- und Elementwerte diirfen beliebige Zeichen enthalten
mit folgenden Ausnahmen:

& Das kaufménnische Und-Zeichen muss durch & ersetzt werden
< Die offnende spitze Klammer muss durch &1t; ersetzt werden.

Ferner miissen in Attributwerten, die per doppelter Anfiihrungsstriche umfasst sind,
eben doppelte Anfithrungsstriche durch > ; ersetzt werden. Gleiches gilt fiir Attribut-
werte in einfachen Anfiihrungsstrichen. Hier miissen einfache Anfithrungsstriche durch
' ersetzt werden. Diese vordefinierten Ersatzzeichen werden Entities genannt. Ge-
nerell kann man jedes Zeichen durch seinen entsprechenden Unicode- oder ASCII-Wert
ersetzen, entweder in dezimaler oder hexadezimaler Darstellung. Dem grossen A ist der
ASCII-Code 65 zugeordnet. Es kann daher durch A oder hexadezimal durch A
ersetzt werden. Kommentare werden durch <!-- begonnen und per --> geschlossen. In-
nerhalb von Attributwerten werden sie nicht erkannt, innerhalb eines Tags fithren sie zu
fehlerhaftem XML.

6.1.1. DTD

Eine Dokumenttypdefinition (Document Type Definition (DTD)) beschreibt Sprachum-
fang und Struktur eines XML-Formats. Ein XML-Dokument kann gegen seine DTD
gepriift werden, und wird — falls es der DTD geniigt — valide genannt. Eine DTD ist
eine Textdatei, deren Aufbau an die Erweiterte Backus-Naur-Form (EBNF) erinnert.
Sie kann entweder in ein XML-Dokument eingebettet werden, oder als externe Datei
referenziert werden. In beiden Fillen muss die DTD direkt nach der XML-Deklaration
eingebunden werden:
<?xml version="1.0"7>
<!DOCTYPE buecher SYSTEM ” http://bib.fh—bielefeld .de/dtds/buecher.dtd”>
<buecher>

<buch preis="74,95_EUR”>

<titel>Internet Routing Architekturen</titel>

</buch>
</buecher>

Das Wurzelelement buecher, alle untergeordneten Elemente und somit — weil ein wohl-
geformtes XML-Dokument genau ein Wurzelelement aufweisen muss — das gesamte
XML-Dokument miissen der DTD geniigen, die iiber den Uniform Resource Identi-
fier (URI) http://bib.fh-bielefeld.de/dtds/buecher.dtd referenziert wird. Ob-
wohl dieser URI eine giiltige URL darstellt, muss es sich nicht um eine giiltige (Internet-
)Adresse handeln. Die Menge aller URLs stellt eine Untermenge von URIs dar. Von
einer URI fordert man lediglich, dass sie einen eindeutigen Bezeichner darstellt. Eine
URL hingegen muss Protokoll und Pfad zu einer Resource wie z.B. zu einem Doku-
ment aufweisen. In der Praxis hat es sich jedoch durchgesetzt, die URI zu einer DTD
als konkrete (und offentlich abrufbare) URL zu notieren. So kann ein Parser jederzeit
die XML-Dokumente validieren, welche auf diese DTD verweisen. Eine Document Type
Definition selbst ist kein XML-Dokument:

<!ELEMENT buecher (buchx*)>

<!ELEMENT buch (titel)>
<I/ELEMENT titel (#PCDATA)>

64

6 AUSZEICHNUNGSSPRACHEN 6.1 XML

Das (Wurzel-)Element buecher kann eine beliebige Anzahl von Elementen des Typs
buch enthalten. Neben dem Sternchen * gibt es wie bei reguldren Ausdriicken als Wie-
derholungsoperatoren das Fragezeichen 7, welches anzeigt, dass das vorangehende Ele-
ment nicht oder nur einmal vorkommen darf, und das Pluszeichen +, welches ein- oder
mehrmaliges Vorkommen ausdriickt. Das Element buch muss genau ein Element titel
enthalten, welches nur Zeichen(-ketten) (parsed character data) enthalten darf. Der Typ
#PCDATA ist vordefiniert. Mit Hilfe des senkrechten Striches | konnen in einer DTD
Variationen ausgedriickt werden:

<!ELEMENT buecher (buch*)>

<!HEMENT buch (titel , (autor | autoren))>

<I/ELEMENT titel (#PCDATA)>

Ein Buch muss somit einen Titel und ein Element autor oder autoren enthalten.
Natiirlich miissen auch diese definiert werden:

<IELEMENT autor (#PCDATA)>
<!ELEMENT autoren (autor+)>

Das Element autoren ist somit eine Auflistung von einem oder mehreren Autoren, die
wiederum Zeichenketten sind. Attribute wie z.B. preis in den obigen Beispieldokumen-
ten werden in einer DTD separat aufgefiihrt:

<!ATTLIST buch preis CDATA #REQUIRED>

Die Attributliste sagt aus, dass das Element buch genau ein Attribut preis aufweisen
muss (#REQUIRED). Die Attributwerte miissen Zeichenketten (character data) sein. Neben
#REQUIRED, welches anzeigt, dass ein Attribut aufgefiihrt werden muss, sind folgende
Angaben moglich:

#IMPLIED Das Attribut ist optional

#FIXED <Defaultwert> Das Attribut muss bei jeder Verwendung des Elementes ange-
geben werden und muss den vorgegebenen Defaultwert haben

<Defaultwert> Das Attribut ist optional. Fehlt es, wird es implizit auf den angegebenen
Defaultwert gesetzt.

Als Attributtypen konnen die folgenden verwendet werden:
CDATA Der Attributwert muss eine beliebige Zeichenkette sein
ID Der Attributwert muss eine innerhalb des Dokumentes eindeutige Zeichenkette sein

IDREF Der Attributwert muss gleich dem Wert eines Attributes vom Typ ID sein. Es ist
nicht moglich, den Namen des so referenzierten Attributes oder Elementes anzu-
geben. Die korrekte Verkniipfung muss also die Anwendung selbst herstellen

<Liste wvon selbst definierten Bezeichnern> Der Attributwert muss ein Bezeich-
ner aus der Liste sein (vgl. enum in C).

Die Attributliste fiir das Element buch kann also z.B. wie folgt erweitert werden:
<!ATTLIST buch

preis CDATA #REQUIRED
ishn D YREQUIRED
hardcover (yes | no) #REQUIRED
notiz CDATA AMPLIED
beschaedigt CDATA "nein”

65

6 AUSZEICHNUNGSSPRACHEN 6.1 XML

Ein im Sinne dieser DTD valides XML-Dokument wére z.B. das folgende:

<?xml version="1.0"7>
</DOCTYPE buecher SYSTEM ” http://bib.fh—bielefeld .de/dtds/buecher.dtd”>
<buecher>
<buch preis="74,95_EUR” isbn="3-8272—-5938—X” hardcover="yes”>
<titel>Internet Routing Architekturen</titel>
<autoren>
<autor>Bassam Halabi</autor>
<autor>Danny McPherson</autor>
</autoren>
</buch>
</buecher>

Die DTD kann im XML-Dokument transportiert werden, anstatt per URI referenziert
zu werden:

<?xml version="1.0"7>

</DOCTYPE buecher |
<IEIEMENT buecher (buchx*)>
<!EFLIEMENT buch (titel , (autor | autoren))>
<IFIEMENT titel (
<!EIEMENT autor (#PCDATA)
<!ELEMENT autoren (autor+)>
<!ATTLIST buch

preis CDATA #REQUIRED
isbn D #REQUIRED
hardcover (yes | no) #REQUIRED
notiz CDATA AMPLIED
beschaedigt CDATA ”nein”
>

1>

<buecher>

<!— ... Buecher ... —>

</buecher>

6.1.2. Namensrdaume

Obwohl mit den oben erlduterten Dokumenttypdefinitionen rigide XML-Formate fest-
gelegt werden konnen, so dass sie z.B. Datenbanktabellen mit ihren Constraints na-
hezu vollstdndig abbilden kénnten, werden sie in der Praxis selten angewendet. Zum
einen stellt die Syntax einer DTD kein valides XML dar. Zum anderen kann ein XML-
Dokument nur genau eine DTD referenzieren. So ist es z.B. nicht moglich, eine
person.dtd zu definieren, die Angaben zu einer Person wie Name, Vorname, Email-
adresse, etc. verlangt, und diese DTD bzw. das Element person in der o.g. Buchliste
als Autor zu verwenden. Daher hat das World Wide Web Consortium (W3C)'°, das
federfithrend XML und dessen Derivate entwickelt, sogenannte Namensrdume (name-
spaces) eingefiihrt. Ein Namensraum wird im XML-Dokument als Prefix vor Elementna-
men verwendet. Damit Namensrdume eindeutig sind, werden sie iiber einen eindeutigen
URI referenziert:
<?xml version="1.0"7>
<fhbielefeld:buecher

xmlns:fhbielefeld="http://bib.fh—bielefeld .de/nspace/buecher”>

<!— ... Buecher ... —>
</fhbielefeld:buecher>

Bhttp://www.u3.org

66

http://www.w3.org

6 AUSZEICHNUNGSSPRACHEN 6.1 XML

Das (Wurzel-)Element buecher entstammt dem Namespace fhbielefeld. Dieser ist
eindeutig dem URI http://bib.fh-bielefeld.de/nspace/buecher zugeordnet. Es ist
dabei dem XML-Parser iiberlassen, ob und wie er jenen Namensraum behandelt. Im
Gegensatz zu DTDs verbirgt sich dahinter keine formale Vorschrift zum Validieren des
XML-Dokumentes. Das oben skizzierte Beispiel, in dem das Format der Autorendaten
aus einer weiteren DTD importiert werden sollte, ldsst sich mit Namensrdumen l6sen:

<?xml version="1.0"7>
<fhbielefeld:buecher
xmlns:fhbielefeld="http://bib.fh—bielefeld .de/nspace/buecher”
xmlns:person="http://bib.fh—bielefeld .de/nspace/person”>
<fhbielefeld:buch>
<fhbielefeld:titel>Modern Operating Systems</fhbielefeld:titel>
<fhbielefeld:autor>
<person:name>Tanenbaum</person:name>
<person:vorname>Andrew</person:vorname>
<person:titel>Professor</person:titel>
</fhbielefeld:autor>
</fhbielefeld:buch>
</fhbielefeld:buecher>

Zum einen kann ein Elementname scheinbar mehrfach verwendet werden. Zu beachten
ist in obigem Beispiel jedoch, dass der Buchtitel zum Namensraum fhbielefeld gehort,
der (akademische) Titel des Autors jedoch zu person. Zum anderen muss der Namespace
fhbielefeld nicht die Elemente von person implementieren. Letzterer wird dadurch in
unterschiedlichen XML-Formaten verwendbar. Definiert man einen Default-Namespace,
so muss ein Namensraum nur bei Elementen angegeben werden, die nicht zum Default-
Namespace gehoren. Er wird durch Weglassen des Namespace-Namens zwischen xmlns
und dem Namespace-URI definiert. Folgendes Dokument ist daher zu obigem #quivalent:
<?xml version="1.0"7>
<buecher xmlns="http://bib.fh—bielefeld .de/nspace/buecher”
xmlns:person="http://bib.fh—bielefeld .de/nspace/buecher”>
<buch>
<titel>Modern Operating Systems</titel>
<autor>
<person:name>Tanenbaum</person:name>
<person:vorname>AndreW</person:vorname>
<person:titel>Professor</person:titel>
</autor>
</buch>
</buecher>

6.1.3. XML Schema

Das W3C hat keine Moglichkeit vorgesehen, Namensrdume an eine DTD zu binden.
Statt dessen wurde XML Schema entwickelt, mit dessen Hilfe Formatvorschriften in
einem XML-Format definiert werden konnen. XML Schema ist selbst iiber den Name-
space http://www.w3.0rg/2001/XMLSchema definiert. Ein giiltiges XML Schema hat
folgenden Aufbau:

<?xml version="1.0"7>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema”

targetNamespace="http://bib.fh—bielefeld /nspace/buecher”>
</xs:schema>

Das Attribut targetNamespace des Wurzelelementes schema gibt den Namensraum an,
fiir den dieses XML Schema definiert wird. Folgendes Schema beschreibt ein triviales
XML-Format, dessen Wurzelelement buchtitel nur eine Zeichenkette enthalten darf:

67

6 AUSZEICHNUNGSSPRACHEN 6.1 XML

<?xml version="1.0"7>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema”
targetNamespace=" http://bib.fh—bielefeld /nspace/buecher”>
<xs:element name="buchtitel” type="xs:string” />

</xs:schema>

Neben string kennt XML Schema u.a. folgende simple Datentypen:

boolean Mogliche Werte sind true und 1 fiir logisch wahr, false und 0 fiir logisch
falsch

string beliebige Zeichenkette
integer beliebiger Ganzzahlwert
dateTime Datum und Zeit im Format YYYYMMDDTHH:MM: SS mit

YYYY Jahr
MM Monat
DD Tag

T Trennzeichen zwischen Datum und Zeit
HH Stunde

MM Minute
SS Sekunde

Alle vordefinierten Datentypen findet man auf den Webseiten des W3C'7. Elementen
kann ein Standardwert zugewiesen werden, so dass sie im XML-Dokument nicht explizit
aufgefithrt werden miissen:

<xs:element name="buchtitel” type="xs:string”
default="Ein_tolles .Buch” />

Ebenso kann einem Element ein konstanter Wert zugeordnet werden:

<xs:element name="buchtitel” type="xs:string”
fixed="Fester.Buchtitel” />

Elemente, die als Typ keinen simplen Datentyp wie string oder integer aufweist,
werden komplexe Elemente genannt. Hierzu zéhlen insbesondere Elemente, die unterge-
ordnete Kindelemente enthalten:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema”
targetNamespace="http://bib.fh—bielefeld /nspace/buecher”>
<xs:element name="buch”>
<xs:complexType>
<xs:all>
<xs:element name="titel” type="xs:string” />
<xs:element name="autor” type=’xs:string” />
</xs:all>
</xs:complexType>
</xs:element>
</xs:schema>

Per complexType wird ein komplexer Datentyp definiert. Das Element xs:all ist ein
sogenannter Indikator. Er gibt an, wie oft und in welcher Reihenfolge die Kindelemente
aufgefithrt werden miissen. Es gibt drei Variationen:

all Alle untergeordneten Elemente diirfen im XML-Dokument maximal einmal vorkom-
men, und zwar in der vom XML Schema vorgegebenen Reihenfolge

"http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/#built-in-datatypes

68

http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/#built-in-datatypes

6 AUSZEICHNUNGSSPRACHEN 6.1 XML

choice Jedes untergeordnete Element kann beliebig oft vorkommen

sequence Alle untergeordneten Elemente miissen im XML-Dokument mindestens ein-
mal vorkommen, und zwar in der vom XML Schema vorgegebenen Reihenfolge.

Zusétzlich existieren Indikatoren, die als Attribut einer Elementdefinition verwendet
werden koénnen.

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema”
targetNamespace="http://bib.fh—bielefeld /nspace/buecher”>
<xs:element name="buch”>
<xs:complexType>
<xs:sequence>
<xs:element name="titel” type="xs:string”
minOccurs="1" maxOccurs="1" />
<xs:element name="autor” type="xs:string”
minOccurs="1" maxOccurs="unbounded” />
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

Somit muss das Element titel genau einmal vorkommen, autor hingegen mindestens
einmal. Das vollstdndige XML Schema fiir eine Buchliste sieht wie folgt aus:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema”
targetNamespace="http://bib.fh—bielefeld /nspace/buecher”>
<xs:element name="buecher”>
<xs:complexType>
<xs:sequence>
<xs:element name="buch”
minOccurs="1" maxOccurs="unbounded” />
<xs:complexType>
<xs:sequence>
<xs:element name="titel” type="xs:string”
minOccurs="1" maxOccurs="1" />
<xs:element name="autor” type="xs:string”
minOccurs="1" maxOccurs="unbounded” />
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

Dieses Schema sollte 6ffentlich zugénglich abgelegt werden. z.B. unter der URL
http://bib.fh-bielefeld/nspace/buecher.xsl. Es kann unter Verwendung des Na-
mespaces http://www.w3.org/2001/XMLSchema-instance in einem XML-Dokument
referenziert werden:

<?xml version="1.0"7>
<buecher xmlns="http://bib.fh—bielefeld .de/nspace/buecher”
xmlns:xsi="http: //www.w3.org /2001 /XMLSchema—instance”
xsi:schemaLocation="http://bib.fh—bielefeld .de/nspace/buecher.xsl”>
<buch>
<titel>Modern Operating Systems</titel>
<autor>Andrew Tanenbaum</autor>
</buch>
</buecher>

Das Prefix xsi bezieht sich auf den Namensraum
http://wuw.w3.org/2001/XMLSchema-instance. Dieser stellt das Attribut

69

6 AUSZEICHNUNGSSPRACHEN 6.2 XSLT

schemaLocation bereit, iiber den das Schema eingebunden wird. XML Schema wird
u.a. in SOAP (s. Kapitel 6.3) und WSDL (s. Kapitel 6.4) zur Parameterdefinition und
-iibergabe verwendet.

6.2. XSLT

Mit Hilfe von Eaxtensible Stylesheet Language Transformations (XSLT) werden XML-
Dokumente in andere Datentypen wie z.B. Textdateien umgewandelt. XSLT ist ein Teil
der Extensible Stylesheet Language (XSL). Diese umfasst zusitzlich die sogenannten Fiz-
tensible Stylesheet Language Formatting Objects (XSL-FO), mit denen XML-Dokumente
flir die Ausgabe auf einem Bildschirm, fiir den Druck, etc. formatiert werden. XSLT und
XSL-FO verwenden zur jeweiligen Umwandlung von XML-Dokumenten sogenannte Sty-
lesheets, die ebenfalls in XML notiert werden. Stylesheets fiir XSL-FO enthalten i.d.R.
physikalische Angaben wie Papiergrosse, Abstidnde in Pixel, etc. Stylesheets fiir XSLT
stellen hingegen einen Compiler fiir XML-Dokumente in das jeweilige Zielformat dar.
Weiterer Bestandteil von XSL ist XPath, eine Sprache, mit der Elemente eines XML-
Dokumentes ausgewahlt werden kénnen. XSL-FO und XSLT verwenden XPath. XSLT
ist im Namensraum http://www.w3.org/1999/XSL/Transform definiert. Ein Stylesheet
hat daher folgenden Aufbau:
<?xml version="1.0"7>
<xsl:stylesheet xmlns:xsl="http://www.w3.o0rg/1999/XSL/Transform”
version="1.0">

<xsl:output method="text” />
</xsl:stylesheet>

Die Angabe der Versionsnummer im Wurzelelement stylesheet ist zwingend notwen-
dig. Mit dem Element output teilt man dem XSLT-Parser mit, welches (Datei-)Format
das Zieldokument hat. Mogliche Werte sind xm1, text und html. Die eigentlichen Trans-
formationsvorschriften werden mit dem Element template eingeleitet. Sie werden auf
die Elemente des Quelldokumentes angewendet, die das Attribut match beschreibt:

<?xml version="1.0"7>
<xsl:stylesheet xmlns:xsl="http://www.w3.o0rg/1999/XSL/Transform?”
version="1.0">
<xsl:output method="text” />
<xsl:template match="/">
hello, world
</xsl:template>
</xsl:stylesheet>

Der Attributwert von match stellt eine Pfadangabe in XPath dar. Wie in Unix-Datei-
systemen dient der Schrigstrich zur Hierarchietrennung. Ein einzelner Schrigstrich wie
im Beispiel spricht jedoch nicht das Wurzelelement des Quelldokumentes an, sondern
die iibergeordnete Ebene, sprich das gesamte Dokument. Das Template wird also jedes
XML-Dokument in den Text hello, world umformen. Mit for-each kann man iiber
Elemente gleichen Namens und gleicher Hierarchiestufe iterieren:

<?xml version="1.0"7>
<xsl:stylesheet xmlns:xsl="http://www.w3.o0rg/1999/XSL/Transform”
version="1.0">
<xsl:output method="text” />
<xsl:template match="/">
<xsl:for —each select="buecher/buch”>
<!— ... ein einzelnes Buch transformieren ... —>
</xsl:for —each>
</xsl:template>
</xsl:stylesheet>

70

6 AUSZEICHNUNGSSPRACHEN 6.2 XSLT

Mit dieser Schleife iteriert man iiber jedes Element namens buch, falls es ein Kindelement
von buecher ist. Die Reihenfolge, in der eine Schleife abgearbeitet wird, legt man optional
per sort innerhalb des Schleifenkorpers fest:

<?xml version="1.0"7>
<xsl:stylesheet xmlns:xsl="http://www.w3.o0rg/1999/XSL/Transform”
version="1.0">
<xsl:output method="text” />
<xsl:template match="/">
<xsl:for —each select="buecher/buch”>
<xsl:sort select="autor” order="ascending” />
<!— ... ein einzelnes Buch transformieren ... —>
</xsl:for —each>
</xsl:template>
</xsl:stylesheet>

Die Liste aller Biicher wird somit aufsteigend nach dem Namen des Autors sortiert
bearbeitet. Analog zu ascending gibt es descending fiir absteigende Sortierung. Uber
das Attribut data-type legt man die Art der Sortierung fest. Es kann die Werte text
flir textuelle oder number fiir Sortierung nach Zahlen haben. Den Wert eines Elements
gibt man per value-of aus:

<?xml version="1.0"7>
<xsl:stylesheet xmlns:xsl="http://www.w3.o0rg/1999/XSL/Transform?”
version="1.0">
<xsl:output method="text” />
<xsl:template match="/">
<xsl:for —each select="buecher/buch”>
<xsl:value —of select="titel” />
</xsl:for —each>
</xsl:template>
</xsl:stylesheet>

Die XPath-Angaben sind i.d.R. nicht voll qualifiziert. Sie beziehen sich immer auf das
aktuelle Element. So ist titel relativ zu buecher/buch auszuwerten. Daher ist es z.B.
per ../element auch moglich, iibergeordnete Elemente anzusprechen. Unformatierter
Text kann ohne eigene Elemente ausgegeben werden. Da jedoch Entities wie z.B. die
offnende spitze Klammer < durch &1t; ersetzt werden, sollte unformatierter Text mit
dem XSLT-Element text ausgegeben werden. Dieses akzeptiert das boolsche Attribut
disable-output-escaping:

<?xml version="1.0"7>
<xsl:stylesheet xmlns:xsl="http://www.w3.o0rg/1999/XSL/Transform?”
version="1.0">
<xsl:output method="text” />
<xsl:template match="/">
<xsl:for —each select="buecher/buch”>
<xsl:value —of select="titel” />
<xsl:text disable—output—escaping="yes”>, </xsl:text>
</xsl:for —each>
</xsl:template>
</xsl:stylesheet>

Somit erhélt man eine kommaseparierte Ausgabe aller Buchtitel. Mit if und choose
existieren zwei Elemente zur Fallunterscheidung:

<?xml version="1.0"7>

<xsl:stylesheet xmlns:xsl="http://www.w3.o0rg/1999/XSL/Transform?”
version="1.0">
<xsl:output method="text” />
<xsl:template match="/">

71

6 AUSZEICHNUNGSSPRACHEN 6.2 XSLT

<xsl:for —each select="buecher/buch”>

<xsl:if test="titel =.’Ein_toller _Buchtitel >”>
<xsl:value —of select="autor” />
</xsl:if>

</xsl:for —each>
</xsl:template>
</xsl:stylesheet>

Das gezeigte Stylesheet gibt den Namen des Buchautors nur aus, wenn der Titel Ein
toller Buchtitel lautet. Fiir eine Mehrfachauswahl muss choose verwendet werden,
welches auch einen Defaultzweig anbietet:

<?xml version="1.0"7>
<xsl:stylesheet xmlns:xsl="http://www.w3.o0rg/1999/XSL/Transform”
version="1.0">
<xsl:output method="text” />
<xsl:template match="/">
<xsl:for —each select="buecher/buch”>
<xsl:choose>
<xsl:when test="titel_=_"Ein_toller _Buchtitel >”>
<xsl:value—of select="titel” />
</xsl:when>
<xsl:when test="titel_=_’Ein_brilianter _Buchtitel >”>
<xsl:value—of select="titel” />
</xsl:when>
<xsl:otherwise>
<xsl:text disable—output—escaping="yes”>
Ein normaler Buchtitel
</xsl:text>
</xsl:otherwise>
</xsl:choose>
</xsl:for —each>
</xsl:template>
</xsl:stylesheet>

XSLT-Stylesheets werden i.d.R. mittels eines XSLT-Parsers auf XML-Dokumente ange-
wendet. Fiir visuelle Tests konnen alternativ ein aktueller Browser (z.B. Firefox ab Ver-
sion 1.0.2, Opera ab Version 9 oder Internet Explorer ab Version 6) verwendet werden.
Zunichst referenziert man das Stylesheet per Processing Instruction im XML-Dokument;:

<?xml version="1.0"7>
<?xml-stylesheet href="buecher.xsl” type="text/xsl”7?>
<buecher>
<buch>
<titel>Modern Operating Systems</titel>
<autor>Andrew Tanenbaum</autor>
</buch>
<buch>
<titel>Internet Routing Architekturen</titel>
<autor>Bassam Halabi and Danny McPherson</autor>
</buch>
</buecher>

Dieses XML-Dokument muss im selben lokalen Verzeichnis gespeichert sein wie das fol-
gende Stylesheet, dessen Dateiname buecher.xsl lauten muss:

<?xml version="1.0"7>
<xsl:stylesheet xmlns:xsl="http://www.w3.o0rg/1999/XSL/Transform?”
version="1.0">
<xsl:output method="text” />
<xsl:template match="/">
<xsl:for —each select="buecher/buch”>
<xsl:sort select="titel” order="ascending” />

72

6 AUSZEICHNUNGSSPRACHEN 6.3 SOAP

<xsl:text disable—output—escaping="yes”>Titel: </xsl:text>
<xsl:value —of select="titel” />
<xsl:text>
</xsl:text> <!— Zeilenvorschub —>
<xsl:text disable—output—escaping="yes”>Autor: </xsl:text>
<xsl:value —of select="autor” />
<xsl:text>
</xsl:text> <!— Zeilenvorschub —>
</xsl:for —each>
</xsl:template>
</xsl:stylesheet>

Ruft man nun das obige XML-Dokument in einem Browser auf, wird er die Biicherliste
zur Darstellung nach den Regeln des XSLT-Stylesheets in ein Textdokument transfor-
mieren (s. Abbildung 10).

' &m0 Mozilla Firefox = |

IL[;“—'* ""?* € file:// /Users/FIO/Desktop /buecher.xml ¥ | =

Titel: Internet Routing Architekturen
hutor: HBassam Halabi and Danny McPherson
Titel: Modern Operating Systems

Autor: Andrew Tanenbaum

Abbildung 10: Der Webbrowser Firefox als XSLT-Parser

6.3. SOAP

Das Simple Object Access Protocol (SOAP) ist ein Protokoll zum entfernten Aufruf von
Funktionen (Remote Procedure Call (RPC)). Nachrichten zwischen Client und Server
werden in einem besonderen XML-Format ausgetauscht. Als Transportprotokoll wird
iiberwiegend HTTP bzw. dessen sichere Variante HTTPS eingesetzt'®. Generell sind al-
le Medien moglich, die den Transport von (XML-)Dokumenten erlauben wie z.B. Email,
FTP, etc. Das Wurzelelement einer SOAP-Nachricht lautet envelope. Dieses muss ge-
nau ein Element body aufweisen, welches die vom Programmierer festgelegten Funktions-
aufrufe und Parameteriibergaben beinhaltet. Optional kann dem Element body ein per
header begrenzter Abschnitt vorangestellt werden, der Metaangaben iiber die Nachricht
wie z.B. Authentifizierungsparameter, eine eindeutige Nachrichten-ID, o.4. enthalten
kann. SOAP ist durch den Namespace http://schemas.xmlsoap.org/soap/envelope/
gegeben. Eine typische SOAP-Nachricht vom Client zum Server sieht wie folgt aus:
<?xml version="1.0"7>
<S:envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/”>

<S:body>

<ns2:CreateProject
xmlns:ns2="http://fjo—otrs.dts—online.net/Kernel /DTSSoap”>
<User>test</User>
<Pass>test</Pass>
<ProjectName>Ein neues Projekt</ProjectName>
<ProjectDebtorID>1111</ProjectDebtorID>

</ns2:CreateProject>

</S:body>

8Daher auch der Begriff Webservice(s).

73

6 AUSZEICHNUNGSSPRACHEN 6.4 WSDL

</S:envelope>

Diese Nachricht ruft die Funktion CreateProject mit den Argumenten User, Pass,
ProjectName und ProjectDebtorID auf. War der Aufruf fehlerfrei und gibt die Funktion
einen Wert zuriick, so antwortet der Server ebenfalls mit einem SOAP-Body:

<?xml version="1.0"7>
<soap:envelope
xmlns:namespl="http://fjo—otrs.dts—online.net/Kernel /DTSSoap”
xmlns:xsi="http: //www.w3.org /2001 /XMLSchema—instance”
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/”
xmlns:xsd="http: //www.w3.org /2001 /XMLSchema”
soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/”
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/”>
<soap:body>
<namespl:CreateProjectResponse>
<CreateProjectReturn
xsi:type="xsd:string”>ok</CreateProjectReturn>
</namespl:CreateProjectResponse>
</soap:body>
</soap:envelope>

Die Funktion gibt einen String mit dem Wert ok zuriick. Tritt ein Fehler auf, so bein-
haltet der SOAP-Body lediglich ein Element namens Fault, das Aufschluss {iber das
Scheitern des Funktionsaufrufes gibt (aus Platzgriinden ist das Element faultstring
hier mehrzeilig):

<?xml version="1.077>
<soap:envelope
xmlns:xsi="http: //www.w3.org /2001 /XMLSchema—instance”
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/”
xmlns:xsd="http: //www.w3.org /2001 /XMLSchema”
soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/”
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/”>
<soap:body>
<soap:Fault>
<faultcode>soap:Server</faultcode>
<faultstring>User test is not authorized to call method
CreateProject from remote host 81.89.251.79 at
/usr/local /otrs/Kernel /DTSSoap.pm line 372,
&1t ;PRODUCTIgt ; line 24.
</faultstring>
</soap:Fault>
</soap:body>
</soap:envelope>
Offenbar liegt ein Berechtigungsproblem vor. Der Fehlertext 1dsst vermuten, dass es sich
um ein in Perl geschriebenes SOAP-Modul handelt. SOAP-Nachrichten wird ein Pro-
grammierer selten manuell erzeugen. Statt dessen setzt man entsprechende Bibliotheken
ein, die entfernte Funktionsaufrufe wie herkommliche, lokale Funktionsaufrufe ermogli-

chen und so jegliche Komplexitit verbergen'”.

6.4. WSDL

Die Web Services Description Language (WSDL) erméglicht es, automatisch aus den Si-
gnaturen der von einem SOAP-Server bereitgestellten Funktionen lokale Funktionsriimp-
fe (sogenannte Stubs) zu erzeugen. Bei schwach typisierten Programmiersprachen wie

19Vgl. andere RPC-Protokolle wie Corba oder DCOM

74

6 AUSZEICHNUNGSSPRACHEN 6.4 WSDL

z.B. Perl werden die Funktionssignaturen aus speziell formatierten Kommentaren gewon-
nen. In Java hingegen kénnte dies per Introspektion iiber das Reflection API?" gesche-
hen. C-Derivate konnten mittels separatem Compiler die jeweiligen statischen Headerfiles
in WSDL-Dokumente transformieren. Wahrend SOAP-Libraries die eigentlichen RPC-
Aufrufe kapseln, entbindet WSDL also den Programmierer von der Aufgabe, die Stubs
manuell mit den SOAP-Funktionen abzugleichen. WSDL stellt daher eine unidirektiona-
le Kommunikation dar, in der Clients vom Server pollen. Die Funktionsbeschreibung in
WSDL erfolgt in einem eigenen XML-Format. Neben dem Wurzelelement definitions
werden die folgend erlduterten Elemente erwartet:

message Das Element message fasst Argumente zusammen, die einer Funktion iiber-
gegeben werden oder die eine Funktion zuriickliefert. Es umfasst meist mehrere
Kindelemente namens part, die Name und Typ des jeweiligen Argumentes be-
schreiben. XML Schema stellt hierzu die Datentypen bereit.

portType Das Pivotelement portType definiert die vom SOAP-Server bereitgestellten
Funktionen. Es verkniipft die per message definierten Argumente mit den Funkti-
onsnamen. Kin WSDL-Dokument enthélt meist nur ein Element portType, welches
mehrere Kindelemente namens operation umfasst. Diese beschreiben die jeweili-
ge Funktionssignatur mit erwarteten Argumenten (Element input) und etwaigen
Riickgabewerten (Element output).

binding Das Element binding beschreibt, wie Funktionsargumente in den jeweiligen
SOAP-Nachrichten serialisiert werden sollen (Bindings). Die Auswahl der richti-
gen Serialisierungsart bzw. des Binding Styles hangt von den verwendeten SOAP-
und WSDL-Bibliotheken ab, die Server und Clients verwenden. Zwischen den Kin-
delementen von binding und portType besteht eine 1:1-Beziehung.

services Das Element services ordnet die per binding definierten Funktionsaufrufe
der URL des SOAP-Servers zu.

Fin typisches WSDL-Dokument ist wie folgt aufgebaut:

<?xml version="1.0"7>

<wsdl:definitions
targetNamespace="http://fjo—otrs.dts—online .net/Kernel /DTSSoap”
xmlns:impl="http: //fjo—otrs.dts—online.net/Kernel /DTSSoap”
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/”
xmlns:wsdl="http: //schemas.xmlsoap.org/wsdl/”
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/”
xmlns:xsd="http: //www.w3.org /2001 /XMLSchema”
xmlns:tns1="http://fjo—otrs.dts—online.net/Kernel /DTSSoap”>

<wsdl:message name=" CreateProjectRequest”>
<wsdl:part name="User” type="xsd:string” />
<wsdl:part name="Pass” type="xsd:string” />
<wsdl:part name="ProjectName” type="xsd:string” />
<wsdl:part name="ProjectDebtorID” type="xsd:string” />
</wsdl:message>

<wsdl:message name="CreateProjectResponse”>
<wsdl:part name=" CreateProjectReturn” type="xsd:string” />

</wsdl:message>

<wsdl:portType name="KernelDTSSoapHandler”>

Onttp://java.sun.com/docs/books/tutorial/reflect/

75

http://java.sun.com/docs/books/tutorial/reflect/

6 AUSZEICHNUNGSSPRACHEN 6.4 WSDL

<wsdl:operation name=" CreateProject”
parameterOrder=" User _.Pass.ProjectName._ProjectDebtorID”>
<wsdl:input message="impl:CreateProjectRequest”
name=" CreateProjectRequest” />
<wsdl:output message="impl:CreateProjectResponse”
name=" CreateProjectResponse” />
</wsdl:operation>
</wsdl:portType>

<wsdl:binding name=" KernelDTSSoapSoapBinding”
type="impl:KernelDTSSoapHandler”>
<wsdlsoap:binding style="rpc”
transport="http://schemas.xmlsoap.org/soap/http” />
<wsdl:operation name=" CreateProject”>
<wsdlsoap:operation soapAction="" />
<wsdl:input name=" CreateProjectRequest”>
<wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/”
namespace="http://fjo—otrs.dts—online.net/Kernel /DTSSoap”
use="literal” />
</wsdl:input>
<wsdl:output name="CreateProjectResponse”>
<wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/”
namespace="http://fjo—otrs.dts—online.net/Kernel /DTSSoap”
use="literal” />
</wsdl:output>
</wsdl:operation>
</wsdl:binding>

<wsdl:service name=" KernelDTSSoapHandlerService”>
<wsdl:port binding="impl:KernelDTSSoapSoapBinding”
name="KernelDTSSoap”>
<wsdlsoap:address
location="http://fjo—otrs.dts—online .net/soap” />
</wsdl:port>
</wsdl:service>
</wsdl:definitions>

Unter der URL http://fjo-otrs.dts-online.net/soap wird ein SOAP-Service be-
reitgestellt. Dieser umfasst die Funktion CreateProject, welche vier Zeichenketten als
Parameter erwartet. Diese heissen User, Pass, ProjectName und ProjectDebtorID.
Die Funktion liefert als Riickgabewert ebenfalls eine Zeichenkette. Als Serialisierungs-
art definiert das Element binding hier den Typ RPC/literal. Es gibt fiinf Serialisie-
rungsarten, die sich in zwei Klassen einteilen lassen: RPC' encodierte und Document
encodierte Binding Styles. Verwendet man letztere, so werden die Funktionsargumente
in der WSDL-Definition als eigenes XML-Schema dargestellt. Dies hat den Vorteil, dass
jede SOAP-Nachricht mit einem generischen XML-Parser gegen dieses Schema verifiziert
werden kann. Folgend werden alle Serialisierungsarten erldutert:

RPC/encoded Die Funktionsargumente einer nach RPC/encoded serialisierten SOAP-
Nachricht weisen nicht nur den Wert des jeweiligen Argumentes, sondern auch
dessen Typ auf, z.B.:

<?xml version="1.0"7>
<S:envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/”>
<S:body>
<ns2:CreateProject
xmlns:ns2="http: //fjo—otrs.dts—online.net/Kernel /DTSSoap”
xmlns:xsi="http: //www.w3. org /2001 /XMLSchema—instance”

76

6 AUSZEICHNUNGSSPRACHEN 6.4 WSDL

xmlns:xsd="http: //www.w3.org /2001 /XMLSchema’>
<User xsi:type="xsd:string”>test</User>
<Pass xsi:type="xsd:string”>test</Pass>

<ProjectName
xsi:type="xsd:string”>Ein neues Projekt</ProjectName>

<ProjectDebtorID xsi:type="xsd:string”>1111</ProjectDebtorID>
</ns2:CreateProject>
</S:body>
</S:envelope>

RPC/literal SOAP-Nachrichten im Stil von RPC/literal verzichten auf eine Typangabe

bei Funktionsargumenten:

<?xml version="1.0"7>
<S:envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/”>
<S:body>
<ns2:CreateProject
xmlns:ns2="http://fjo—otrs.dts—online.net/Kernel /DTSSoap”>
<User>test</User>
<Pass>test</Pass>
<ProjectName>Ein neues Projekt</ProjectName>
<ProjectDebtorID>1111</ProjectDebtorID>
</ns2:CreateProject>
</S:body>
</S:envelope>

Document/literal Verwendet man die Bindungsart Document/literal, so wird das
WSDL-Dokument um einen Schemaabschnitt erweitert. Auf dessen Elemente ver-

weisen dann die Funktionsargumente:

<!l— ... —
<wsdl:types>

<xsd:schema
xmlns:xsi="http: //www.w3. org /2001 /XMLSchema—instance”

xmlns:xsd="http: //www.w3. org /2001 /XMLSchema”>
<xsd:element name="UserElement” xsi:type="xsd:string” />
<xsd:element name="PassElement” xsi:type="xsd:string” />
<xsd:element name="ProjectNameElement”
xsi:type="xsd:string” />
<xsd:element name="ProjectDebtorIDElement”
xsi:type="xsd:string” />
</xsd:schema>
</wsdl:types>
<wsdl:message name=" CreateProjectRequest”>
<wsdl:part name="User” element="UserElement” />
<wsdl:part name="Pass” element="PassElement” />
<wsdl:part name="ProjectName” element="ProjectNameElement” />
<wsdl:part name="ProjectDebtorID”
element="ProjectDebtorIDElement” />
</wsdl:message>
<!l— ... —

Quellen wie () geben an, dass SOAP-Nachrichten nach Document /lite-
ral nicht den Namen der aufgerufenen Funktion mitfiithren, z.B.:

<?xml version="1.0"7>

<S:envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/”>

<S:body
xmlns:ns2="http: //fjo—otrs.dts—online.net/Kernel /DTSSoap”>

<ns2:User>test</ns2:User>
<ns2:Pass>test</ns2:Pass>

77

6 AUSZEICHNUNGSSPRACHEN 6.4 WSDL

<ns2:ProjectName>Ein neues Projekt</ns2:ProjectName>
<ns2:ProjectDebtorID>1111</ns2:ProjectDebtorID>
</S:body>
</S:envelope>

Eine derartige Nachricht wire jedoch nicht konform mit dem SOAP-Schema, wel-
ches nur ein Kindelement im Body zulédsst. Quellen wie () zeigen
daher Beispielnachrichten, die nach Document/literal encodiert sind und dennoch
den Funktionsnamen aufweisen.

Document/literal wrapped Im Unterschied zu Document/literal, welches fiir jedes Ar-
gument einer Funktion ein eigenes, per Schema definiertes Element verwendet,
kapselt Document/literal wrapped die Argumente einer Funktion in einem komple-
xen Datentyp. Das WSDL-Dokument hat daher folgenden Aufbau:

<l— ... —
<wsdl:types>
<xsd:schema
xmlns:xsi="http: //www.w3.org /2001 /XMLSchema—instance”
xmlns:xsd="http://www.w3.org/2001/XMLSchema”>
<xsd:element name="CreateProjectParameters”>
<xsd:complexType>
<xsd:sequence>
<xsd:element name="User” xsi:type="xsd:string” />
<xsd:element name="Pass” xsi:type="xsd:string” />
<xsd:element name="ProjectName”
xsi:type="xsd:string” />
<xsd:element name="ProjectDebtorID”
xsi:type="xsd:string” />
</xsd:sequence>
</xsd:complexType>
<xsd:element name="CreateProjectParameters”>
</xsd:schema>
</wsdl:types>
<wsdl:message name=" CreateProjectRequest”>
<wsdl:part name="parameters”
element=" CreateProjectParameters” />
</wsdl:message>
<l— ... —

Document/encoded Die Serialisierungsart Document/encoded wird von keiner Anwen-
dung eingesetzt. Eine Implementierung miisste wie bei RPC/encoded die Datenty-
pen in der SOAP-Nachricht auffithren und in der WSDL-Beschreibung ein Schema
definieren, welches ebenfalls alle Argumente samt Datentypen darstellt.

In der Praxis werden vorwiegend RPC/literal und Document/literal wrapped verwen-
det. RPC/encoded entspricht nicht den Vorgaben der Web Services Interoperability Or-
ganization (WS-1)?!, einem Firmenkonsortium, welches das Zusammenspiel von Web
Services-Plattformen verschiedener Anbieter sicherstellen méchte.

Hnttp: //www.ws—1i.org

78

http://www.ws-i.org

7 DATENBANKABFRAGESPRACHEN

7. Datenbankabfragesprachen
7.1. SQL

Die Structured Query Language (SQL) dient zur Daten- und Strukturmanipulation sowie
zur Verwaltung einer Datenbank. Sie stellt keine Programmiersprache dar. So fehlen
u.a. Moglichkeiten zur Variablendefinition und Kontrollstrukturen wie Schleifen. SQL
ist semantisch an umgangssprachliches Englisch angelehnt. Anweisungen miissen mit
einem Semikolon abgeschlossen werden:

SELECT * FROM studenten ;

Der Befehl selektiert alle Datensétze (Zeilen) sowie alle Attribute (Spalten) aus der
Tabelle studenten. Um unnétige Last zu vermeiden, sollten zum einen nur tatséchlich
von der Anwendung benottigte Attribute selektiert werden, z.B.:

SELECT email FROM studenten ;

Ausserdem sollte die Anzahl der ausgewéhlten Datensiitze limitiert werden, sofern z.B.
von vornherein feststeht, dass die Anwendung nur Studenten mit einer bestimmten Ma-
trikelnummer verarbeiten soll:

SELECT email FROM studenten WHERE matrikelnr >= 200000;

Die Optionen der WHERE-Klausel stellen boolsche Ausdriicke dar und kénnen mit AND,
OR oder NOT (als Negation vor einem Ausdruck) kombiniert werden:

SELECT email FROM studenten \
WHERE (matrikelnr >= 200000) OR (matrikelnummer = 100000);

Mit der Anweisung INSERT fiigt man einer Relation Datensitze hinzu. Zu beachten
ist, dass Zeichenketten im Gegensatz zu den meisten Programmiersprachen in einfache
Anfiihrungsstriche gefasst werden miissen:
INSERT INTO studenten (matrikelnummer, vorname, name, email) VALUES (

203583,

"Felix 7,

"Ogris 7,

"felix@fh —bielefeld .de’
);
Lé&sst man beim Einfiigen eines neuen Datensatzes Attribute aus, so wird der Datensatz
an ihrer Stelle mit Defaultwerten ergéinzt, die der Programmierer beim Anlegen der
Relation vorgegeben hat. Wurden keine Defaultwerte vorgegeben, so erhélt man einen
Fehler. Der Befehl DELETE zum Léschen von Datenséitzen dhnelt der SELECT-Anweisung;:

DELETE FROM studenten WHERE matrikelnummer < 100000;

Datensitze konnen mit dem Befehl UPDATE verdndert werden. Hierbei kann man den
Attributen nicht nur feste Werte zuweisen:

UPDATE studenten SET matrikelnummer = matrikelnummer + 1000;

Somit wird jede Matrikelnummer um 1000 erhsht. Vor der Anderung kann eine Selektion
stattfinden:

UPDATE studenten SET matrikelnummer = matrikelnummer — 1000 \
WHERE name = ’Meier’;

Die gezeigte Anweisung dndert die Matrikelnummer nur von Studenten, die Meier heis-
sen. Mit dem Befehl CREATE TABLE werden Relationen angelegt:

79

7 DATENBANKABFRAGESPRACHEN

7.1 SQL

CREATE TABLE studenten (

id SERIAL,
matrikelnummer INTEGER,

name VARCHAR(100) ,
vorname VARCHAR(100) ,
email VARCHAR(100)

b

SQL bzw. PostgreSQL kennt eine Vielzahl von Datentypen. Tabelle 8 erldutert die wich-

tigsten.
Tabelle 8: Ausgewéhlte Datentypen in PostgreSQL

Datentyp Beschreibung

SMALLINT 2 Byte grosser Integerwert im Bereich von -32768 bis
32767

INTEGER 4 Byte grosser Integerwert im Bereich von
-2147483648 bis 2147483647

BIGINT 8 Byte grosser Integerwert im Bereich von
-9223372036854775808 bis 9223372036854775807

SERIAL 4 Byte grosser Integerwert im Bereich von
-2147483648 bis 2147483647, der beim FKinfiigen
eines neuen Datensatzes atomar inkrementiert wird

BIGSERIAL 8 Byte grosser Integerwert im Bereich von
-9223372036854775808 bis 9223372036854775807,
der beim Einfiigen eines neuen Datensatzes atomar
inkrementiert wird

REAL 4 Byte grosser FlieBkommawert mit einer Genauig-

keit von 6 Stellen

DOUBLE PRECISION

8 Byte grosser FlieSkommawert mit einer Genauig-
keit von 15 Stellen

VARCHAR(n) Zeichenkette mit maximaler Linge von n Zeichen

CHAR(n) Zeichenkette mit fester Lénge von n Zeichen, unge-
nutzte Stellen miissen mit Leerzeichen gefiillt werden

TEXT beliebig lange Zeichenkette

BOOLEAN boolscher Wert; logisch wahr kann durch TRUE, 1,
7, ’true’, ’y’, ’yes’, *1’ dargestellt werden, lo-
gisch falsch durch FALSE, 0, ’f’, >false’, ’n’, ’no’,
) O)

TIMESTAMP WITHOUT | 8 Byte grosser Zeit- & Datumswert (s.a. Kapitel

TIME ZONE 4.2.3)

TIMESTAMP WITH TIME
ZONE

8 Byte grosser Zeit- & Datumswert, der vor der Aus-
gabe in die lokalen Zeitzone umgerechnet wird

Die Typen SERIAL und BIGSERIAL verdienen besondere Beachtung. Weisst man einem
derartigen Feld innerhalb einer INSERT-Anweisung keinen Wert zu, so wird gegeniiber
einer vorangegangenen Einfiigeoperation automatisch der um 1 gréssere Wert verwen-
det. Da derartige Attribute atomar inkrementiert werden, ist gewé#hrleistet, dass z.B.
das Feld id der Tabelle studenten eindeutig ist. Es ist daher zum priméren Schliissel
geeignet. Problematisch bei diesen autoinkrementellen Typen kénnen Uberldufe werden.
Geht man von einer Lebensdauer der Tabelle von 10 Jahren aus, so kénnen Felder vom

80

7 DATENBANKABFRAGESPRACHEN 7.1 SQL

Typ SERIAL hochstens

23! v_.U
10 * 365 % 86400 s ' s

und Felder vom Typ BIGSERIAL maximal

263

U WU
— =~ 2,9%x10"7—
10 %365 86400 s 00 g

verarbeiten, bevor ein Uberlauf eintritt (mit %: Updates pro Sekunde). Sogenannte Con-
straints stellen Bedingungen dar, die jeder Datensatz erfiillen muss. Erfiillt er diese nicht,
wird er nicht in die Relation aufgenommen bzw. nicht aktualisiert. Constraints werden

bei der Tabellendefinition angegeben:

CREATE TABLE studenten (

id SERIAL NOT NULL,
matrikelnummer INTEGER NOT NULL,

name VARCHAR(100) NOT NULL,
vorname VARCHAR(100) NOT NULL,
email VARCHAR(100) NOT NULL

);

Implizit hat jedes Attribut einen Null-Constraint, d.h. dem Attribut muss nicht zwingend
ein Wert zugewiesen werden, damit der Datensatz giiltig ist. Die Not-Null-Bedingungen
im Beispiel verlangen hingegen, dass den Attributen immer ein Wert zugewiesen ist. Der
Unique-Constraint erzwingt, dass der Wert eines Attributes einmalig in der gesamten
Relation ist:

CREATE TABLE studenten (

id SERIAL NOT NULL,
matrikelnummer INTEGER NOT NULL UNIQUE,
name VARCHAR(100) NOT NULL,
vorname VARCHAR(100) NOT NULL,
email VARCHAR(100) NOT NULL

);

Somit darf jede Matrikelnummer nur ein einziges Mal vorkommen. Zu beachten ist,
dass nur Attribute eine Unique-Bedingung erhalten sollten, die auch einen expliziten
Not-Null-Constraint besitzen. Nur belegte, sprich mit einem Wert versehene Felder un-
terliegen einem Unique-Constraint, so dass trotz vermeintlicher FEinzigartigkeit mehrere
nicht wertbehaftete Felder in einer Relation vorkommen kénnen. Sogenannte Check-
Constraints werden als boolsche Ausdriicke formuliert:

CREATE TABLE studenten (

id SERIAL NOT NULL,
matrikelnummer INTEGER NOT NULL UNIQUE,
name VARCHAR(100) NOT NULL,
vorname VARCHAR(100) NOT NULL,

VARCHAR(100) NOT NULL CHECK(char_length (email) > 3)

email
)s
Die Funktion char_length() ermittelt die Zeichenldnge eines Strings, hier des Attribu-
tes email. Folglich miissen alle Emailadressen 4 oder mehr Zeichen aufweisen. Ferner
konnen derartige Bedingungen nicht nur pro Attribut definiert werden, sondern auch als

Tabellenconstraint:

CREATE TABLE studenten (
id SERIAL NOT NULL,

81

7 DATENBANKABFRAGESPRACHEN 7.1 SQL

matrikelnummer INTEGER NOT NULL UNIQUE,

name VARCHAR(100) NOT NULL,
vorname VARCHAR(100) NOT NULL,
email VARCHAR(100) NOT NULL CHECK(char_length (email) > 3),

CHECK (name != vorname)
);
Somit wird versichert, dass der Name eines Studenten nicht gleich seinem Vornamen
ist. Priméarschliissel werden mit der Option PRIMARY KEY definiert, Fremdschliissel per

REFERENCES oder FOREIGN KEY:
CREATE TABLE studenten (

id SERIAL NOT NULL PRIMARY KEY,

matrikelnummer INTEGER NOT NULL UNIQUE,

name VARCHAR(100) NOT NULL,

vorname VARCHAR(100) NOT NULL,

email VARCHAR(100) NOT NULL CHECK(char_length (email) > 3),
plz INTEGER REFERENCES staedte (plz),

CHECK (name != vorname)
);
CREATE TABIE staedte (

plz INTEGER NOT NULL UNIQUE PRIMARY KEY,

stadt VARCHAR(100)
);
Schliissel, die aus mehreren Attributen bestehen, miissen wie Tabellen-Constraints defi-
niert werden. Allerdings sollte man sie nur mit Bedacht einsetzen, da sie oftmals Indiz
fiir ein nicht normalisiertes Datenmodell sind:
CREATE TABLE raeume (

gebaeude_nummer INTEGER NOT NULL,

raum_numimer INTEGER NOT NULL,

sitzplaetze INTEGER NOT NULL CHECK(sitzplaetze > 0),
PRIMARY KEY (gebaeude_nummer, raum_nummer)

IE

CREATE TABLE mitarbeiter (
personal_nr INTEGER NOT NULL UNIQUE PRIMARY KEY,

name VARCHAR(100) NOT NULL,

gebaeude_nummer INTEGER NOT NULL,

raum_numimer INTEGER NOT NULL,

FOREIGN KEY (gebacude_nummer, raum nummer) REFERENCES raeume

)s

Sind die Attributnamen von Primér- und Fremdschliissel gleichlautend, so konnen sie
beim Referenzieren der Fremdtabelle weggelassen werden. Vergisst man bei der Defi-
nition der Fremdschliissel den Not-Null-Constraint, kénnen in die Relation Datensétze
eingefiigt werden, die nicht mit einem Datensatz in der Fremdtabelle verkniipft sind.

Relationen werden per DROP gel6scht:
DROP TABLE studenten ;

Wird die Tabelle jedoch noch als Fremdtabelle referenziert, kann sie nicht geléscht wer-
den. Relationen konnen per ALTER TABLE verdndert werden. So kann z.B. ein weiteres

Attribut hinzugefiigt werden:
ALTER TABLIE studenten ADD strasse VARCHAR(100);

Analog werden Spalten geldscht:
ALTER TABIE studenten DROP strasse ;

82

7 DATENBANKABFRAGESPRACHEN 7.1 SQL

SQL-Befehle dienen nicht nur zum Verindern von Daten und Relationen, sondern auch,
um Benutzer und Datenbanken anzulegen:

CREATE USER benutzerl WITH PASSWORD ’geheim ’;

Die Anweisung legt den User benutzer1 mit dem Passwort geheim an. Das Schliisselwort
WITH ist optional. Da Benutzerkonten intern in Relationen gespeichert werden, kommen
zur Benutzermanipulation ebenfalls SQL-Anweisungen zum Einsatz:

ALTER USER benutzerl PASSWORD ’geheimer ’;

Zusétzlich konnen einem Benutzer die Rechte zum Anlegen von Datenbanken (s.u.) oder
weiteren Benutzern zugesprochen werden:

ALTER USER benutzerl CREATEDB;
ALTER USER benutzerl CREATEUSER;

Per DROP USER wird ein Login geldscht. Den Benutzer, mit dem man gerade angemeldet
ist, kann man jedoch nicht l6schen. Nach dem Anlegen des Datenbankclusters enthélt
ein PostgreSQL-Server drei Datenbanken:

templatel Die Datenbank templatel dient per default als Vorlage fiir weitere Daten-
banken. Sie kann vom Administrator angepasst werden, so dass neue Datenbanken
mit den verdnderten Werten angelegt werden.

template0 Die Datenbank template0 diente als Vorlage fiir templatel. Sie stellt daher
die ”Ur-Datenbank” dar, akzeptiert standardmaéssig keine Verbindungen und wird
nur im Notfall zur Wiederherstellung von templatel verwendet.

postgres Die Datenbank postgres ist eine Beispieldatenbank, die von templatel beim
Anlegen des Datenbankclusters kopiert wurde. Sie hat den selben Status wie z.B.
die Datenbank test eines MySQL-Servers und kann auf einem Produktivsystem
geloscht werden.

Weitere Datenbanken werden mit dem Befehl CREATE DATABASE angelegt:
CREATE DATABASE shop WITH OWNER = benutzer?2;

Dem User benutzer2 gehort somit die Datenbank shop und besitzt implizit das Recht,
in dieser Datenbank Tabellen anzulegen. Auch hier ist das Fiillwort WITH optional. Per
GRANT und REVOKE kénnen einem Benutzer Rechte zugesprochen bzw. entzogen werden:

GRANT SELECT ON studenten TO benutzerl ;

Der Datenbankuser benutzerl erhélt hiermit das Recht zum Abrufen von Datenséitzen
aus der Tabelle studenten. Neben SELECT konnen alle oben erlduterten SQL-Befehle,
eine beliebige Kombination dieser Befehle oder das subsummierende Schliisselwort ALL
als Berechtigungsstufe vergeben werden:

GRANT UPDATEDEILETE ON studenten TO benutzer3;
GRANT ALL ON studenten TO benutzer4;

Analog setzt man REVOKE ein, um Rechte zu entziehen:

REVOKE ALL ON studenten FROM benutzer3 ;
REVOKE INSERT ON studenten FROM benutzerb5 ;

Rechte werden nicht nur auf Tabellenebene vergeben, sondern auch auf Schemata und
Datenbanken. Ein Schema kann als Container oder auch Namensraum (namespace) in-
nerhalb einer Datenbank interpretiert werden. Eine Relation ist genau einem Schema
zugeordnet (s. Abbildung 11). Berechtigungen zum Kreieren einer Tabelle werden daher
an das jeweilige Schema gekniipft. Der Name eines Schemas wird als Prefix vor einem
Tabellennamen angegeben:

83

7 DATENBANKABFRAGESPRACHEN 7.1 SQL

Datenbankcluster
Datenbank 1 Datenbank n
Schema 1 Schema 1
Relation 1 Relation n Relation 1 Relation n
Attribut 1 |Attribut n Attribut 1|Attribut n Attribut 1 |Attribut n Attribut 1 |Attribut n
Schema n Schema n
Relation 1 Relation n Relation 1 Relation n
Attribut 1 |Attribut n Attribut 1|Attribut n Attribut 1 |Attribut n Attribut 1 |Attribut n

£ £

pg_hba.conf

Abbildung 11: Der schematische Aufbau eines PostgreSQL-Datenbankclusters

SELECT x FROM schemal . studenten ;
Lésst man den Schemanamen aus, so wird implizit das Schema public verwendet. Daher
sind die beiden folgenden Anweisungen dquivalent:

DELETE FROM public.studenten WHERE matrikelnummer > 1000000;
DELETE FROM studenten WHERE matrikelnummer > 1000000;

Per GRANT CREATE wird generell das Recht zum Anlegen von Schemata oder Tabellen
vergeben:

GRANT CREATE ON SCHEMA schemal TO benutzer3;

Der User benutzer3 erhilt somit das Recht, Tabellen im Schema schemal anzulegen.
Analog kann ihm dieses Recht wieder entzogen werden:

REVOKE CREATE ON SCHEMA schemal FROM benutzer3;

Um Schemata anzulegen, benétigt man das CREATE-Recht auf Datenbankebene:
GRANT CREATE ON DATABASE shop TO benutzer3;

Der Besitzer einer Datenbank verfiigt implizit iiber die Rechte zum Anlegen von Schema-
ta und Relationen. Die meisten Anwendungen wie auch OTRS verlagern Berechtigungs-

84

7 DATENBANKABFRAGESPRACHEN 7.1 SQL

hierarchien nicht in die Datenbank, sondern greifen mit nur einem Datenbankbenutzer
auf Relationen zu und implementieren eigene Zugriffsrechte.

85

8 OTRS

8. OTRS

8.1. Installation

Die Installation von OTRS gestaltet sich aufgrund des Portssystems von FreeBSD rela-
tiv einfach. So werden u.a. Perlmodule zum Ansprechen der Datenbank und zum Par-
sen und Erzeugen von Emails automatisch installiert. Abbildung 12 zeigt das Opti-
onsmenil beim obligatorischen Aufruf von make config install clean im Verzeichnis
/usr/ports/devel/otrs. Hier wurde die Unterstiitzung von PostgreSQL-Datenbanken

]

806 X xterm

Options for otrs 2,2.4

MySOL database support
PostgreSlL database support
Feports support

Enable LDAP support

Enable zpell checking

lze GhuFG

Abbildung 12: Das Optionsmenii zur Installation von OTRS

aktiviert, die von MySQL-Datenbanken deaktiviert. OTRS kann optional Emails direkt
per SMTP versenden. Dies wurde ebenfalls abgewéhlt, da der lokale Postfix verwendet
werden soll. Wihrend der Installation wird der Systembenutzer otrs sowie die Gruppe
otrs angelegt. Dies ist notwendig, da OTRS periodisch ausgefithrte Programme, soge-
nannte cronjobs bendtigt. Aus Sicherheitsgriinden sollten diese nicht mit den Rechten
des Administrators, sprich Root-Rechten laufen. Nach der Installation beinhaltet das
Homeverzeichnis /usr/local/otrs einer OTRS-Installation 4 Unterverzeichnisse:

Kernel Hier liegen die Konfigurationsdateien, sémtliche Perlmodule und HTML-Tem-
plates fiir die Weboberfliche

bin Skripte zur Administration sind im Verzeichnis bin hinterlegt

scripts Hier sind Konfigurationsbeispiele fiir den Apache Webserver, diverse Testskripte
sowie SQL-Anweisungen zum Anlegen einer OTRS-Datenbankinstanz gespeichert

var In den Unterverzeichnissen von var werden zur Laufzeit temporéire Dateien abgelegt;
im Verzeichnis var/httpd liegen ferner Bilder bzw. Icons fiir die Weboberfldche

86

8 OTRS 8.2 Administration

Ausserhalb des Homeverzeichnisses legt OTRS keine Dateien an (abgesehen von der
Datenbank, die im Verzeichnis /var/db/pgsql liegt). Die Datenbank fiir eine OTRS-
Instanz wird in 2 Schritten angelegt:

1. Als Datenbankadministrator legt man den Benutzer otrs an und die ihm gehérende
Datenbank otrs an. Hierzu ruft man das Kommandozeilenprogramm psql mit den
Parametern postgres pgsql auf, um sich als DB-Admin pgsql auf die Datenbank
postgres zu verbinden. Anschliessend setzt man die folgenden SQL-Befehle ab:

CREATE USER otrs PASSWORD ’geheim ’;
CREATE DATABASE otrs OWNER otrs ;

2. Struktur und initiale Daten werden mit 3 SQL-Skripten in die neu angelegte Da-
tenbank geschrieben. Diese liegen im Verzeichnis scripts/database und miissen
in der angegebenen Reihenfolge mit dem Kommandozeilenprogramm psql einge-
spielt werden:
psql —f otrs—schema.postgresql.sql otrs otrs

psql —f otrs—initial_insert.postgresql.sql otrs otrs
psql —f otrs—schema—post.postgresql.sql otrs otrs

Die Datei otrs-schema.postgresql.sql enthilt alle Relationen der OTRS-Da-
tenbank. Basisdaten wie z.B. der Administrator des OTRS oder Emailtemplates
werden mit otrs-initial_insert.postgresql.sql geschrieben. Die Datenbank
wird mit Constraints aus otrs-schema-post.postgresql.sql kompletiert.

Das Passwort des OTRS-Administrators root@localhost hat per default den Wert
root. Dies sollte auf jeden Fall mit dem Skript bin/otrs.setPassword geéndert werden:

$ bin/otrs.setPassword root@localhost neues_Passwort

8.2. Administration

Im Unterverzeichnis bin des OTRS-Homeverzeichnisses befinden sich Skripte zur Admi-
nistration einer OTRS-Instanz, von denen die gebréuchlichsten nachfolgend beschrieben
werden:

CheckDB.pl iiberpriift, ob die Datenbank konnektiert werden kann und ob in einer
durch die Installation angelegten Systemtabelle Werte vorhanden sind

Cron.sh legt die crontab fiir den Systembenutzer der OTRS-Instanz an, mit der der
Systemdienst cron periodisch Wartungsaufgaben ausfithrt. Das Skript setzt die
crontab aus Textdateien im Verzeichnis var/cron zusammen. Dateien, deren Name
auf .dist enden, werden nicht beachtet. Es handelt sich dabei um entsprechende
Vorlagen

GenericAgent.pl wird periodisch als cronjob ausgefiihrt und versendet z.B. Emails im
Falle von eskalierten Tickets. Im Verzeichnis Kernel/System/GenericAgent kon-
nen hierfiir selbst erstellte Perlmodule installiert werden

PendingJobs.pl wird ebenfalls als cronjob ausgefiihrt und setzt Tickets, die sich in einem
der Stati vom Typ PendingAuto befinden, in den jeweils néichsten Status

PostMaster.pl nimmt Emails von der Standardeingabe entgegen und speichert sie in
der Datenbank. Es sollte i.d.R. mit dem Parameter -t 0 aufgerufen werden, damit
etwaige Header in der Email nicht ausgewertet werden und so z.B. die Queue, in
die die Email einsortiert wird, nicht vorgegeben werden kann

87

8 OTRS 8.3 Module

SetPermissions.sh passt die Berechtigungen aller Dateien und Verzeichnisse unterhalb
des OTRS-Homeverzeichnisses an. Es sollte immer mit den folgenden 5 Parametern
aufgerufen werden:

vollstindige Pfadangabe des OTRS-Homeverzeichnisses

e Name des Systembenutzers der OTRS-Instanz

e Name des Systembenutzers, mit dessen Rechten der Webserver lauft
e Name der Systemgruppe der OTRS-Instanz

e Name der Systemgruppe, mit dessen Rechten der Webserver lauft

UnlockTickets.pl entsperrt bei Aufruf mit dem Parameter --timeout alle Tickets, die
linger als die pro Queue eingestellte Zeitspanne von einem Bearbeiter gesperrt
sind, oder bei Aufruf per -—all alle gesperrten Tickets

opm.pl dient zum Einspielen, Deinstallieren und Erzeugen von Modulpaketen
otrs.checkModules iiberpriift, ob alle von OTRS benétigten Perlmodule installiert sind

otrs.setPassword setzt das Passwort fiir einen OTRS-Benutzer (wie oben gezeigt)

8.3. Module

OTRS ist modular aufgebaut. Die Perlmodule unterhalb des Verzeichnisses Kernel ab-
strahieren

e den Datenbankzugriff
e die Funktions- oder auch Business-Logik
e die auf Templates basierende Webseitendarstellung

e den Zugriff auf die Weboberfldche.

Abbildung 13 zeigt den schematischen Aufbau einer OTRS-Instanz. Die Module zum
Zugriff auf die Webseiten liegen im Verzeichnis Kernel/System/Web. Ihr Name beginnt
per Konvention mit Interface. So stellt z.B. InterfaceAgent.pm den Zugriff auf die
Weboberfliche fiir Bearbeiter zur Verfiigung. Setzt man ein standardméssiges OTRS
ein, so werden diese Zugriffsmodule vom Webserver iiber CGI-Skripte angesprochen, die
in scripts/cgi-bin unterhalb des OTRS-Homeverzeichnisses liegen. Um den bei je-
dem Seitenaufruf notwendigen CGI-Prozess zu umgehen, wurde das Modul DTSWeb. pm
entwickelt, welches beim Starten in den Webserver geladen wird. Die eigentliche We-
boberfliche wird von Modulen im Verzeichnis Kernel/Modules aufgebaut. Sie nehmen
etwaige, vom Anwender per Formular iibergebene Daten an und speichern sie mit Hil-
fe der Businesslogik in die Datenbank. Analog erzeugen sie mit {iber die Businesslogik
abgerufenen Werten aus der Datenbank und Webseitenvorlagen die Oberfliche. Die Tem-
plates liegen in Verzeichnissen unterhalb von Kernel/Output/HTML. Die Namen dieser
Verzeichnisse entsprechen dem Namen des eingestellten Theme. Wird ein Template nicht
gefunden, so wird per default im Verzeichnis Kernel/Output/HTML/Standard gesucht.
Zuséatzlich befinden sich im Verzeichnis Kernel/Languages Perlmodule fiir verschiede-
ne Sprachen, z.B. de.pm fiir die Darstellung in deutsch. Diese Sprachsets kénnen ein-
fach erweitert bzw. angepasst werden, indem man dort Module wie de_Custom.pm oder
en_Custom.pm hinterlegt. Das Verzeichnis Kernel/System stellt die Funktionslogik ei-
ner OTRS-Instanz dar. Sie greift iiber Module in Kernel/System/DB auf die Datenbank

88

8 OTRS 8.3 Module

Admin-

Email o\ rite

Webseitenzugriff

Webseitendarstellung | SOAP

Funktionslogik

Templates
Datenbankzugriff

Datenbank

Abbildung 13: Der schematische Aufbau von OTRS

Nicht dargestellt ist der schreibende Zugriff auf Templates (s. Kapitel 9.4) und der
Versand von Emails aus dem System

zu. In den Verzeichnissen Kernel/System/Auth und Kernel/System/CustomerAuth lie-
gen Module zur Authentifizierung von Bearbeitern bzw. Kunden. Sie kénnen gegen die
Datenbank, LDAP-Verzeichnisse, Remote Authentication Dial-In User Service (RADI-
US)-Server oder andere Webserver authentifiziert werden. OTRS verfiigt iiber minde-
stens zwei Konfigurationsdateien. Nacheinander werden Kernel/Config/Defaults.pm,
alle optionalen Perlmodule in Kernel/Config/Files und die Datei Kernel/Config.pm
geladen. Dabei iiberschreibt bzw. ergénzt eine nachfolgende Datei die jeweils vorangegan-
genen. Das System kann auch iiber die Weboberfliche konfiguriert werden. Das mitgelie-
ferte Frontendmodul SysConfig beschreibt jedoch nicht die erwidhnten Perlmodule, son-
dern XML-Dateien, aus denen die Datei Kernel/Config/Files/ZZZAAuto.pm erzeugt
wird. Diese wird wie oben erldutert zwischen der Defaults.pm und der Config.pm ausge-
wertet. Die Defaults.pm sollte man nicht verdndern, da sie bei einem Update des OTRS
ggf. gedindert wird. Konfigurationsoptionen werden in der Kernel/Config. pm nicht durch
reines Auflisten notiert, sondern als Membervariablen der Klasse Kernel: :Config in der
Methode Load definiert, z.B.:

sub Load ()
my $Self = shift;

$Self —>{"FQDN’} = ’fjo—otrs.dts—online.net’;
$Self —>{’AdminEmail’} = ’fjo@dts.de’;
$Self —>{’Organization’} = 'DTS_Service GmbH’;

89

8 OTRS 8.4 Modulprogrammierung

8.4. Modulprogrammierung

Die Perlmodule des OTRS stellen jeweils eine separate Klasse dar. Ausnahmen sind
lediglich einige Hilfsmodule, die nur eine spezielle Aufgabe {ibernehmen, wie z.B. Module
zum Generieren von Ticketnummern. Ein typisches Modul hat folgenden Aufbau:

#!/usr/bin/perl
package Kernel:: System :: Demomodul;

use strict ;

use warnings;

use Kernel:: System :: MyModule;
... weitere Module einbinden

our $VERSION = 71.0”;

sub new ()

{
my $Type = shift;
my %Param = Q_;
my $Self = {};
bless ($Self, $Type);
adopt all provided objects
foreach (keys %Param) {
$Self —>{$_} = $Param{S$_};
}
check meeded stuff
foreach (qw(LogObject TimeObject ConfigObject)) {
if (!$Self—>{$_}) {
die "Got_no_.$_!";
}
}
create additional objects
$Self —>{MyModuleObject} = Kernel :: System : : MyModule—>new(%Param) ;
return $Self;
}
... Memberfunktionen

1;

Neben den beiden Modulen strict und warnings miissen alle Packages bzw. Klassen
eingebunden werden, von denen das gezeigte Demomodul Objekte instanziert. Der Kon-
struktor new segnet bzw. klassifiziert zunéichst den leeren Hash, auf den die Referenz
$Self verweist. Alle iibergebenen Parameter werden in den (tempordren) Hash %Param
iibernommen und dann als Membervariablen im neuen Objekt gespeichert. In der Re-
gel enthalten die Parameter ausschliesslich Objekte und keine Werte wie Zeichenketten
0.4. So erwartet der Konstruktor im Beispiel, dass er in den Parametern LogObject,
TimeObject und ConfigObject Instanzen der Klassen Kernel: :System: :Log,

Kernel::System: : Time respektive Kernel: :Config erhilt. In () (S. 136
- 137) bzw. in () (S. 147 - 148) wird diese Art der Objektiibergabe com-
position bzw. Komposition genannt. Sie kann als einfache und lockere Variante zu einer
rigiden Klassenhierarchie angesehen werden, die normalerweise in der objektorientierten

90

8 OTRS 8.5 Templates

Programmierung konstruiert wird. Welche Objekte einem Konstruktor iibergeben wer-
den, kann nur durch Studium des Quellcodes von mitgelieferten Modulen und Skripten
festgestellt werden. So erzeugen die Module im Verzeichnis Kernel/System/Web, welche
fiir den Zugriff iiber die Weboberfliche verantwortlich sind, mindestens Instanzen der
Klassen

e Kernel::Config

e Kernel::System: :Log
e Kernel::System::Main
e Kernel::System::Time
e Kernel::System: :DB.

Per Konvention setzt sich der Parametername aus dem letzten Teil des Klassennamens
und dem String Object zusammen. Benétigt eine Instanz Objekte, die ihr nicht iiber-
geben werden, so miissen sie im Konstruktor angelegt werden, wie MyModuleObject im
Beispiel. Memberfunktionen erhalten die jeweilige Objektreferenz ($Self) als ersten Pa-
rameter und kénnen so auf alle Objekte zugreifen. Scheitert ein Methodenaufruf, so wird
dies entweder durch den Riickgabewert von undef, was durch ein parameterloses return
geschieht, oder durch den sofortigen Abbruch mittels die() angezeigt. Zusétzlich kann
ein Logeintrag mit der Methode Log aus der Klasse Kernel: :System: : Log bzw. dessen
Instanz LogObject geschrieben werden.

8.5. Templates

Die Weboberfliche des OTRS basiert auf Templates. Diese Vorlagen liegen in Verzeich-
nissen unterhalb von Kernel/Output/HTML. Die Dateinamen miissen auf .dtl enden.
Jedes Template stellt nur einen Teil der fertigen Oberfliche dar. So existiert eine Vor-
lage nur fiir den Kopfbereich jeder Seite, eine Vorlage fiir die Navigationsleiste, eine
Vorlage zur Eingabe von Ticketdaten, eine Vorlage zur Anlage eines neuen Benutzers,
usw. Daher bestimmt jedes Frontendmodul (im Verzeichnis Kernel/Modules) die dussere
Struktur einer Seite selbst. Innerhalb der Templates konnen einzelne Bereiche markiert
werden und so in der Webseite gezielt ausgeblendet oder aber mehrfach verwendet wer-
den. Derartige Blocke werden mit Kommentaren in HT'ML definiert, z.B.:

<!— dtl:block: Hinweis —>
<p>Hinweis: $Data{”Warnung” }</p>
<!— dtl:block: Hinweis —>

Die Klasse Kernel: :Qutput: :HTML: :Layout stellt die Methode Block bereit, mit der
solche Blocke wie dtl:block:Hinweis aktiviert werden kénnen und mit der Variablen
wie $Data{"Warnung"} ein Wert zugewiesen wird:
$LayoutObject—>Block (

Name => ”Hinweis” ,

Data => {

Warnung => ”Ein._Fehler_ist _aufgetreten.”
}

)s
Somit wird in der Webseite ein Abschnitt mit dem entsprechenden Hinweis bzw. der

Warnung angezeigt. Jedes Frontendmodul muss eine Methode Run definieren. Diese baut
die Webseite auf und hat i.d.R. folgende Struktur:

sub Run ()

{
my $Self = shift;

91

8 OTRS 8.5 Templates

my $LayoutObject = $Self —>{LayoutObject };
my $ParamObject = $Self —>{ParamObject };
my $MyModuleObject = $Self —>{MyModuleObject };

fetch submitted form data
my %Data = ();
foreach (qw(Subaction ...)) {
$Data{$_} = $ParamObject—>GetParam (Param => $_) || 77;
}

start HIML output
my $Output = $LayoutObject—>Header (Title => ”Frontendtest”);
$Output .= $LayoutObject—>NavigationBar ();

evaluate action
if ($Data{Subaction} eq ”Speichern”) {
$MyModuleObject—>Schreiben(%Data) ;

$Output .= $LayoutObject—>Block (
Name => ”Hinweis”
Data = {
Warnung => ”Daten._.wurden.gespeichert.”
}
);
}
else
%Data = $MyModuleObject—>Lesen(%Data) ;
}
apply template
$Output .= $LayoutObject—>Output (
TemplateFile => ”MyTemplate” ,
Data => \%Data
);
$Output .= $LayoutObject—>Footer ();

return $Output;

}

Die Objekte $LayoutObject, $ParamObject und $MyModuleObject werden dem Kon-
struktor des Frontendmoduls iibergeben bzw. dieser muss sie anlegen. $ParamObject
ist eine Instanz von Kernel::System::Web::Request und verfiigt iiber die Methode
GetParam, mit der etwaige Formulardaten abgerufen werden kénnen. Per default liest
das Frontendmodul mit Hilfe eines Objektes der Businesslogik (hier: $MyModuleObject)
Werte aus der Datenbank und stellt sie dem Anwender dar. Werden jedoch Formularda-
ten iibergeben (angezeigt durch den Parameter Subaction), speichert sie das Modul in
der Datenbank. H< man die Namen von Datenbankfeldern und Formularparametern
identisch, so kann der Datenhash (%Data) ohne Modifikation als Argument fiir Methoden
der Businesslogik und fiir Layoutmethoden verwendet werden. Optionale Templateele-
mente wie z.B. Hinweis miissen vor dem finalen Aufruf der Methode Output per Block
aktiviert werden.

92

0~ O UL W

QW W W W DNDNDDNDDNDDNDDNDNDN DN = e e e e
WNHH O OIS Uk WNFE O OO0 Uk W= O

9 ENTWICKELTE MODULE

9. Entwickelte Module

9.1. DTSTicketNumber
9.1.1. Beschreibung

Das Modul DTSTicketNumber erzeugt Ticketnummern in einem eigenen, mindestens
neunstelligen Format. Es setzt sich zusammen aus der eindeutigen System-ID einer
OTRS-Instanz, dem Jahr, dem Monat, dem Tag und einem mindestens zweistelligen
Zahler, der fiir jedes neue Ticket inkrementiert, bei Beginn eines neuen Tages jedoch
auf Null gesetzt wird. Fiir das 18. Ticket am 22. Dezember 2007 ergibt sich fiir die
OTRS-Instanz mit der System-ID 3 daher die Ticketnummer 307122218. Ein derartiges
Modul muss die beiden Funktionen TicketCreateNumber, welche eine neue Ticketnum-
mer als Zeichenkette liefert, und GetTNByString implementieren, die aus einer Betreff-
zeile einer Email eine etwaig vorhandene Ticketnummer extrahiert und zuriickliefert.
Da OTRS datenbankunabhéingig ausgelegt ist, jedoch kein allgemeiner Standard zum
expliziten Sperren einer Datenbank bzw. Relation existiert, greifen Module zum Gene-
rieren von Ticketnummern auf die Textdatei var/log/TicketCounter.log zu, um so
mittels einer Dateisperre den Zihler atomar setzen zu konnen. Der Kern der Funktion
TicketCreateNumber hat folgenden Aufbau:

if (!open(COUNTER, ”4<$CounterLog”)) {

Ticketlog existiert moch nicht
if (!open(COUNTER, ">>$CounterLog”)) {

Fehler
}
close (COUNTER) ;
if (!open(COUNTER, "4<$CounterLog”)) {
Fehler
}
}
if (!flock (COUNTER, 2)) {
Fehler
}

Zdhler einlesen
my $TicketNumber = <COUNTER>;

$TicketNumber++;

if (!truncate(COUNTER, 0)) {

Fehler

}

if (!seek(COUNTER, 0, 0)) {
Fehler

}

print COUNTER $TicketNumber ;

close (COUNTER) ;

In Zeile 1 wird versucht, die Logdatei lesend und schreibend zu 6ffnen (Operator +<).
Schligt dies fehl, wird die Datei nur zum Beschreiben gedffnet und der Dateideskriptor
an das Dateiende gesetzt (Operator >>). Somit ist in Zeile 9 sichergestellt, dass die Log-
datei existiert und kann erneut lesend und schreibend gedffnet werden. Der Aufruf von

93

9 ENTWICKELTE MODULE 9.1 DTSTicketNumber

flock stellt sicher, dass folgend nur ein OTRS-Prozess auf die Datei zugreift. Nach dem
Einlesen und Inkrementieren des Zahlerstandes wird die Logdatei auf die Lange von null
Bytes gekiirzt. Da der alte Zéhlerstand eingelesen wurde, steht der Filedeskriptor jedoch
noch auf dem Dateiende. Der Aufruf von seek in Zeile 27 setzt ihn an den Dateianfang.
Anschliessend wird der neue Zihlerstand geschrieben. Der Aufruf von close schliesst
den Dateideskriptor und entfernt gleichzeitig die Dateisperre.

9.1.2. Konfigurationsparameter

DTSTicketNumber verwendet folgende Konfigurationsparameter:
SystemID die fiir jede OTRS-Instanz eindeutige numerische Kennung

Ticket::CounterLog vollstindige Pfadangabe der Datei, die den Z#hlerstand der Tik-
ketnummer aufnimmt

Ticket::NumberGenerator::MinCounterSize Mindestgrosse des Tageszihlers

Ticket::NumberGenerator::CheckSystemID gibt an, ob beim Erkennen einer Ticket-
nummer die System-ID beachtet werden soll

Ticket::Hook gibt das Prefix einer Ticketnummer an

Ticket::HookDivider gibt die Zeichenkette an, die zwischen Ticket::Hook und der
Ticketnummer steht; hat z.B. Ticket: :Hook den Wert Ticket und
Ticket: :HookDivider den Wert ”: 7, so wird fiir die Ticketnummer 307122218
die Zeichenkette Ticket: 307122218 als Betreffzeile einer Email verwendet.

94

O~ O T W

= = R e e e e e
0O Uk W= O o

9 ENTWICKELTE MODULE 9.2 DTSLib

9.2. DTSLib

9.2.1. Beschreibung

Das Modul DTSLib stellt drei hdufig bendtigte Dateisystemmethoden in der Klasse
Kernel: :System: :DTSLib bereit:

MakeDirectories erwartet den Parameter Directories, der eine Referenz auf ein Array
von Zeichenketten darstellen muss. Die Methode sieht jede Zeichenkette als Pfad
zu einem Verzeichnis an und erstellt dieses, falls es noch nicht existiert

WriteVersionedFile erwartet die Parameter FileName und Data. Die Methode schreibt
die iibergebenen Daten sowohl in die durch FileName angegebene Datei als auch
in eine Sicherheitskopie, deren Name sich aus dem iibergebenen Dateinamen, dem
aktuellen Datum sowie Benutzer-ID und Benutzername zusammensetzt

WriteFile erwartet die Parameter FileName und Data. Die Methode iiberschreibt die
spezifizierte Datei atomar mit den iibergebenen Daten.

Der Kern der Methode WriteFile hat folgenden Aufbau:
my $TempFile = $Param{FileName} . ”.tmp”;

if (lopen(FH, ">$TempFile”)) {
Fehler

}
if (!flock(FH, 2)) {

Fehler
}
if (!seek(FH, 0, 0)) {
Fehler
}
print FH ${$Param{Data}};
close (FH);

if (!rename($TempFile, $Param{FileName})) {
Fehler
}

Die Daten werden zunichst in eine temporire Datei geschrieben. Durch den Aufruf
von flock in Zeile 6 ist gewahrleistet, dass nur ein Prozess auf diese temporire Datei
zugreift. Die Funktion seek setzt den Deskriptor an den Dateianfang. Die Systemroutine
rename zum Umbenennen einer Datei arbeitet atomar. Somit ist sichergestellt, dass die
vorhandene Datei bei Fehlern nicht gel6scht oder nur teilweise iiberschrieben wird.

9.2.2. Konfigurationsparameter

Das Modul DTSLib verwendet keine Konfigurationsparameter.

95

9 ENTWICKELTE MODULE 9.3 DTSFreetext

9.3. DTSFreetext
9.3.1. Beschreibung

Das Modul DTSFreetext versetzt den Administrator einer OTRS-Instanz in die Lage, fiir
jede Queue sogenannte Freitexte’? zu definieren. Diese Freitexte stellen Schliissel-/ Wer-
tepaare dar, die bei jedem Ticket ausgefiillt werden miissen. So ldsst sich erzwingen,
dass bei jedem Ticket notwendige Daten wie z.B. die Seriennummer eines Gerétes vor-
handen sind. Zusétzlich lassen sich Auswahllisten definieren, aus denen beim Erstellen
eines Tickets eine Option ausgewdhlt werden muss. Die Verwendung solcher Freitext-

] 800 OTRS :: Ticket :: Telefon-Ticket = |

/; http://fio-otrs.dts-online.net/sachbearbeiter =3

Von: Kunden-Info:
Kunden suchen | Von: léschen | keine

An: Kundel -

Betreff:

Besitzer: -~ [Ale]

Optionen: [& Rechtschreibprufung 1 [€ Anlagen]["&Kunde]

Anlage: Durchsuchen... | Anhangen
Kundend:
Nachster Status des Tickets: offen -
Warten bis (fir warten* Staws): |15 +| |01 ~|. 2008 +|-|13 ~|:34 ~
Prioritat: 3 normal -
Seriennummer:
Betriebssystem: Linux =
Zeiteinheiten (Arbeitseinheiten): —
N/
Erstellen

4
— 3

Fertig

Abbildung 14: Freitextfelder beim Anlegen eines neuen Tickets

optionen ist jedoch global fiir eine Instanz anzusehen. OTRS bietet keine Moglichkeit,
sie gezielt pro Queue ein- oder auszublenden. Daher verwendet das Modul DTSFree-
text den Metawert ” (not used)”, wenn einer Queue keine expliziten Freitexte zugewiesen
sind. Zudem ist auch der Typ einer Freitextoption (Eingabefeld oder Dropdown-Menii)
global festgelegt und kann nicht pro Queue gedndert werden. Das Modul besteht aus 5
Komponenten:

DTSFreetext.pgsql.sql beinhaltet die Relation dts_queue2freetext, die jeder Queue
entsprechende Freitextoptionen zuordnet

DTSFreetext.pm abstrahiert den Zugriff auf die Relation dts_queue2freetext und
stellt mit der Klasse Kernel: :System: :DTSFreetext die Methoden FreetextList
zum Auslesen, FreetextAdd zum Hinzufiigen und FreetextModify zum Aktuali-
sieren von Freitextoptionen bereit

DTSFreetextAdmin.pm ist das Frontendmodul zum Modifizieren von Freitextoptionen

%2Dje Bezeichnung ist irrefithrend, wird jedoch so in der Dokumentation zu OTRS verwendet.

96

9 ENTWICKELTE MODULE 9.3 DTSFreetext

DTSFreetext.dtl stellt das Template fiir die Administrationsoberfliche dar

DTSFreetextAcl.pm ist das Kernstiick dieses Moduls. OTRS ruft die in dieser Perldatei
definierte Methode Run beim Anlegen oder Modifizieren eines Tickets auf und iiber-
gibt ihr die ID der Queue und optional die ID des Tickets. Mit diesen Werten wird
die Tabelle dts_queue2freetext befragt und fiir diese Queue vorgegebene Frei-
textoptionen in Form einer Access Control List (ACL) zuriickgeliefert. Mit dieser
ACL iiberpriift OTRS, ob der Anwender die Freitextfelder ausfiillen muss.

‘@n 0 OTRS :: Admin :: DTS Freetext = |
v \E—‘ - /2‘ http: / /fjo-otrs.dts-online.net/sachbearbeiter v |
[OTRS] Felix J. Ogris (fio@dts.de) 14:16:21 - 14.01.2008

| . L& B -

Neue

Benutzer & Gruppen & Rollen Queue & Antworten System Sonstiges
[Benutzer | [Dueue | [Anrede] [PostMaster Filter]
[Gruppen] [Antworten] [Signatur 1 [GenericAgent]
[Benutzer <-» Gruppen | [Antworten <= > Queues] [E-tiail Adressen] [Admin-Eenachrichtiqung]
[Kunden Benutzer | [Auto &ntworten] [Benachrichtigung] [Sitzungswerwaltung |
[Kunden-Firma] [Auto Antwarten <-> Queues] [Tvp] [Performance Log]
[Kunden Benutzer <-> Gruppen | [Anlagen | [Status] [System Log |
[Kunden Benutzer <-» Services] [Anlagen <- > &ntworten] [Gervice] [500 Box]
[Rollen] [LT3 Freetest] [5L4] [SvaCanfig]
[Rollen -+ Benutzer | [S/MIME] [Paket Verwsltung]
[Rollen <-: Gruppen] [PGP] [DTS Addresses |
[DTS Virtual Host] [DTS SOAP User]
[DTS Theme]

[DTS Freetext]

Queue: Andern: Andern: Akuualisieren:

Junk TicketFreeKeyl Windows Name: || inux

Kundel TicketFreeKey2 Linux 3

Misc TicketFreeText2 GUItig: | gjltig v

Postmaster

Raw Aktualisieren

Andern
Hinzufigen:
Add a new key/text
Andern Andern
4 4 Hinzuflgen

Powered by OTRS 2.2.3
Fertig

Abbildung 15: Administration der Freitextfelder

9.3.2. Konfigurationsparameter

Damit Freitextoptionen angezeigt werden, miissen diese in einer der Konfigurationsdatei-
en wie Kernel/Config.pm aufgefithrt werden. Um nicht bei jeder Anderung der Freitexte
die gesamte Konfiguration des OTRS neu schreiben zu miissen, wird die Perlfunktion do
verwendet. Sie bindet Dateien erst zur Laufzeit an ihrer Stelle ein:

$Self —>{"DTSFreetext :: TicketFreeText2”} = $Self —>{"Home” }.
7 /var/dts_freetext /TicketFreeText2 . txt”;

$Self —>{ TicketFreeText2’} = {
”"TicketFreeText2._(not.used)” => ”TicketFreeText2.(not._used)”,
do $Self —>{"DTSFreetext:: TicketFreeText2”}

e

9 ENTWICKELTE MODULE 9.3 DTSFreetext

Der Parameter DTSFreetext: : TicketFreeText2 beinhaltet den Pfad zu einer Textda-
tei. Diese wird vom Modul DTSFreetext.pm bei jeder Anderung der Tabelle
dts_queue2freetext neu geschrieben. Sie enthilt den Rumpf eines Hashes, der Schliis-
sel-/Wertepaare darstellt. Die Datei wird beim Abruf des Parameters TicketFreeText2
ausgewertet und formt so zusammen mit dem Defaulteintrag (not used) die moglichen
Freitextoptionen. Das Modul DTSFreetext greift ferner auf die folgenden Konfigurati-
onsparamter zu:

DTSFreetext:: TicketFreeKeyl, ... , DTSFreetext::TicketFreeKeylb6 miissen giiltige
Dateipfade darstellen und sollten den Wert
$Self->{"Home"}."/var/dts_freetext/TicketFreeKeyl.txt" usw. aufweisen.
Sie beinhalten jeweils einen Hash und stellen die méglichen Namen fiir die erste,
zweite, usw. Freitextoption dar

DTSFreetext:: TicketFreeTextl, ... , DTSFreetext::TicketFreeText16 miissen giiltige
Dateipfade darstellen und sollten den Wert
$Self->{"Home"}."/var/dts_freetext/TicketFreeTextl.txt" usw. aufweisen.
Sie beinhalten jeweils einen Hash und stellen die moglichen Werte fiir die erste,
zweite, usw. Freitextoption dar

TicketFreeKeyl, ... , TicketFreeKeyl6 miissen anonyme Hashes darstellen. Sie bein-
halten die moglichen Namen fiir die erste, zweite, usw. Freitextoption und miissen
wie folgt definiert werden:
$Self —>{ TicketFreeKeyl’} = {

?TicketFreeKeyl.(not_used)” => ”TicketFreeKeyl.(not._used)”,
do $Self —>{"DTSFreetext:: TicketFreeKeyl”}

b

TicketFreeTextl, ... , TicketFreeTextl6 miissen anonyme Hashes darstellen. Sie bein-
halten die moglichen Werte fiir die erste, zweite, usw. Freitextoption und miissen
wie folgt definiert werden:

$Self —>{ TicketFreeTextl’} = {
”TicketFreeTextl_(not_used)” => ”TicketFreeTextl._(not.used)”,
do $Self —>{"DTSFreetext:: TicketFreeText1”}

&

Ferner muss die Datei Kernel/Config.pm um folgenden Eintrag ergénzt werden, damit
die Administrationsseite fiir die Freitextoptionen im Webfrontend angezeigt wird:

$Self —>{’Frontend :: Module ’}—>{’DTSFreetextAdmin’} = {
Group => [’admin’ |,
NavBarName => ” Admin” ,
NavBarModule => {
Name => ’DTS_Freetext’,
Block => ’'Block2’,
Prio => 9999,
Module => ’Kernel :: Output : :HTML: : NavBarModuleAdmin ’ ,
})
b

Ausserdem muss das Modul DTSFreetextAcl.pm entsprechend eingebunden werden:

$Self —>{" Ticket :: Acl:: Module”} = {
?"DTSFreetextAcl” => {
Module => ” Kernel :: System :: Ticket :: DTSFreetextAcl” ,
}

I

98

9 ENTWICKELTE MODULE 9.4 DTSTheme

9.4. DTSTheme
9.4.1. Beschreibung

Das Modul DTSTheme ermdglicht es dem Administrator einer OTRS-Instanz, die Stan-
dardansicht der Weboberfldche zu kopieren und diese Kopie nach seinen Wiinschen anzu-
passen. Es handelt sich dabei um einen triviales Textfeld, mit dem die Templates geladen,
bearbeitet und gespeichert werden konnen. Zusétzlich kann jedes dieser Themes mit ei-
nem eigenen Favicon versehen werden, welches in der Adressezeile eines Webbrowsers
angezeigt wird.

9.4.2. Konfigurationsparameter

Das Modul greift auf folgende Konfigurationsparameter zu:

DTSTheme::ImagesDirectory sollte den Wert
$Self->{"Home"}."/var/httpd/htdocs/images" aufweisen und gibt das Verzeich-
nis an, in dem Icons fiir Schaltflichen u.d. liegen

DTSTheme::FaviconsDirectory sollte den Wert
$Self->{"Home"}."/var/httpd/htdocs/favicons" aufweisen und gibt das Ver-
zeichnis an, in dem die Favicons fiir die Weboberfliche liegen

DTSTheme::FaviconName sollte immer den Wert favicon.ico haben und gibt den
Dateinamen eines Favicons an.

Die Administrationsoberfliche des Modules DTSTheme muss wie folgt in die Konfigu-
ration in Kernel/Config.pm eingebunden werden:

$Self —>{’Frontend :: Module ’}—>{’DTSThemeAdmin’} = {
Group => [’admin’],
NavBarName => ” Admin” ,
NavBarModule => {
Name => ’DTS_Theme’,
Block => ’'Block4’,
Prio => 9999,
Module => ’Kernel :: Output : :HITML: : NavBarModuleAdmin ’ ,
} 5
I
Ferner muss der Konstruktor der Klasse Kernel: :Output: :HTML: : Layout erweitert wer-

den, damit auch Icons themebasiert angezeigt werden. Die Zeilen

define $Env{”Images”}
$Self —>{Images} = $Self —>{ConfigObject}—>Get(’Frontend :: ImagePath’);

miissen durch

define $Env{”Images”}
$Self —>{Images} = $Self —>{ConfigObject}—>Get(’Frontend :: ImagePath’). \
$Theme.” /" ;

ersetzt werden.

99

9 ENTWICKELTE MODULE 9.4 DTSTheme

800 OTRS :: Admin :: DTS Theme ()
- (’—‘ - /;\ http:/ /fjo-otrs.dts-online.net/sachbearbeiter ¥ |
[OTRS] Felix J. Ogris (fjo@dts.de) 16:24:55 - 14.01.2008
® s @ .) -
/ n u Neue ht (0) G te Tickets (0)
Benutzer & Gruppen & Rollen Queue & Antworten System Sonstiges

| Benutzer] [Ouzue | [#inrade] [PostMaster Filter]

[Gruppen] [Antworten] [Signatur] [Generichgent |

[Benutzer <- - Gruppen | [Antworten <-» Queues | [E-Mail Adressen] [Admin-Benachrichtiqung]

[Kunden Benutzer] [Auto &ntworten [Benachrichtiqung] [Sitzungsverwaltung |

[Eunden-Firma] [Auto &ntworten <= > Queues | [Tep] [Performance Log]

[Kunden Benutzer <-> Gruppen | [Anlagen] [Status | [Systern Log |

[kunden Benutzer «—: Services | [Anlagen <+ Antworten] [Service] [50L Box]

[Rollen] [DTS Freetesxt] [5la] [SwaConfig |

[Rollen <- > Benutzer] [S/MIME] [Paket Yerwaltung]

[Rallen ¢- > Gruppen] [FGF] [D75 Addresses]

[DTS Wirtusl Host] [DTS S04P User]
[DTS Theme]
[DTS Theme]
Andern: Aktalisieren:
Lite Name: Theme1
Standard 3
Themel Favicon: Durchsuchen...
Templates: (ge templates
Andern | Galrig: giiltig -
Hinzufagen: Aktualisieren

Add a new theme.

Hinzufigen

Powered by OTRS 2.2.3

Fertig

Abbildung 16: Administration der Themes

Ein solches Theme kann entweder mit dem Modul DTS VirtualHost als Defaulttheme
fiir unterschiedliche Hosts eingesetzt werden oder von einem Anwender als personliche
Voreinstellung ausgewéahlt werden. Das Modul besteht aus vier Komponenten:

DTSTheme.pm abstrahiert den Zugriff auf Templates und stellt in der Klasse
Kernel: :System: :DTSTheme die folgenden Methoden bereit:
WriteTemplate zum Abspeichern eines Templates
ListTemplates zum Lesen aller Templates fiir ein bestimmtes Theme
WriteFavicon zum Abspeichern eines Favicons
Themelist zur Aufzdhlung aller Themes einer OTRS-Instanz
ThemeAdd zum Hinzufiigen eines Themes
ThemeModify zum Abspeichern eines Themes.

DTSThemeAdmin.pm stellt das Frontendmodul zur Verwaltung der Themes dar
DTSTheme.dtl ist das Template fiir die Administrationsoberfliche (s. Abbildung 16)

DTSTemplateEditor.dtl stellt die Maske zur Bearbeitung der Templates eines Themes
dar (s. Abbildung 17)

Jedes verdinderte Template wird als Sicherheitskopie auf dem Server hinterlegt. Zudem
ist es nicht moglich, die beiden mitgelieferten Themes Standard und Lite zu verdndern.

100

9 ENTWICKELTE MODULE

9.4 DTSTheme

800 OTRS :: Admin :: DTS Theme =
- @ /™% L http:/ /fjo-otrs. dts-online.net/sachbearbeiter v |
m
[OTRS] Felix J. Ogris (fjo@dts.de) 1
[DTS Theme: Theme1]
Andern: Akuwalisieren:
AdminAttachmentForm.dtl i FooterSmall.dtl id Lobal —
FooterSmall.dtl - provides global small HT ooter
ﬁ:z::gz:zﬁ:ﬁ‘é’;ﬁ::&:ﬁn a # Copyright (C) 2001-2006 OTRS GmbH, http://otrs.org/
X Vit
AdminCustomerUserForm.dtl # $1d: FooterSmall.dtl,v 1.5 2006/12/21 12:27 mh Exp §
AdminCustomerUserGroupChangeForm.dtl i - . .
AdminCustomerUserGroupForm.dtl * software | h ABSOLUTELY NO WARRANTY. P
AdminCustomerUserService.dtl i o Peecive s anloext.
AdminEmail.dtl # -

AdminGenericAgent.dtl

AdminGroupForm.dtl

AdminLog.dtl

AdminNavigationBar.dtl
AdminNatificationForm.dtl
AdminPGPForm.dtl

AdminPOP3.dtl

AdminPackageManager.dt!
AdminPerformanceLog.dtl
AdminPostMasterFilter.dtl
AdminQueueAutoResponseForm.dtl Py
AdminQueueForm.dtl v

Andern

<table border:
<tr>
<td class

</html>
<l== end footer =-->

Fertig

<l-- start footer -

"0 w:

1="100%" cellspacin

"footer">

d">

Abbildung 17: Modifikation eines Templates

101

9 ENTWICKELTE MODULE 9.5 DTSVirtualHost

9.5. DTSVirtualHost
9.5.1. Beschreibung

Mit dem Modul DTS VirtualHost kann eine OTRS-Instanz so eingerichtet werden, dass
sie unter verschiedenen Hostnamen erreichbar ist. Dies betrifft jedoch nur die Konfigu-
ration der OTRS-Instanz. Die Betriebsparameter des Apache Webservers o.4. miissen
durch ein weiteres Modul wie z.B. DTSMaster angepasst werden. DTSVirtualHost be-
notigt zum Betrieb das Modul DTSTheme, da jedem Hostnamen ein eigenes Theme
zugeordnet werden kann. Das Modul besteht aus vier Komponenten:

DTSVirtualHost.pgsql.sql definiert die Relation dts_virtual host, in der alle Hostna-
men einer OTRS-Instanz hinterlegt sind

DTSVirtualHost.pm abstrahiert den Zugriff auf jene Relation und stellt mit der Klasse
Kernel: :System: :DTSVirtualHost folgende Methoden bereit:

VirtualHostList listet alle Hosts einer OTRS-Instanz auf

VirtualHostAdd fiigt einer OTRS-Instanz einen neuen Hostnamen hinzu

VirtualHostModify aktualisiert einen Host
Fiir jeden Host miissen neben seinem Namen folgende Attribute hinterlegt werden:
AgentUrl beschreibt die Adresse, unter der sich Bearbeiter von Tickets einloggen kénnen
CustomerUrl beschreibt die Adresse, unter der Kunden ihre Tickets einsehen kénnen
PublicUrl beschreibt die Adresse, unter der der 6ffentliche FAQ-Bereich zu finden ist
SoapUrl beschreibt die Adresse, unter der die SOAP-Schnittstelle abrufbar ist

Secure / HTTPS gibt an, ob fiir den Virtualhost durch das Modul DTSMaster ein
SSL-Zertifikat erzeugt werden soll

IP Adresse Jeder per HT'TPS geschiitzte Virtualhost muss unter einer eigenen IP Adres-
se abrufbar sein an. Auch bei Einsatz des Modules DTSMaster muss diese 1P
Adresse manuell im Betriebssystem konfiguriert werden und ggf. vorgeschalteten
Firewalls oder Routern bekannt gemacht werden.

9.5.2. Konfigurationsparameter

Das Modul DTS VirtualHost greift auf zwei Konfigurationsparameter zu:

DTSVirtualHost::Host2ThemeFile gibt die Textdatei an, in der jedem Hostnamen der
Instanz ein Theme zugeordnet wird, und sollte den Wert
$Self->{"Home"}."/var/httpd/host2theme.txt" haben

DTSVirtualHost::SSLDirectory gibt das Verzeichnis an, in dem etwaige SSL-Schliissel
und -Zertifikate hinterlegt werden, und sollte den Wert
$Self->{"Home"}."/var/httpd/etc" haben.

Analog zu DTSFreetext wird die Zuordnung von Hostnamen zu Themenamen als anony-
mer Hash in der Konfiguration erwartet. Daher kommt auch hier die Perlfunktion do
zum Einsatz und 14dt zur Laufzeit die unter dem Parameter

DTSVirtualHost: :Host2ThemeFile angegebene Textdatei:

$Self —>{’DefaultTheme : : HostBased ’} = {
do $Self —>{"DTSVirtualHost :: Host2ThemeFile” }
I

Die Konfigurationsoberfliche muss ebenfalls in die Datei Kernel/Config.pm eingebun-
den werden:

102

9 ENTWICKELTE MODULE 9.5

DTSVirtualHost

$Self —>{’Frontend :: Module ’}—>{’DTSVirtualHostAdmin’} = {
Group => [’admin’ |,
NavBarName => ” Admin” ,
NavBarModule => {
Name => ’DTS_Virtual _Host’,
Block => ’Block3’,
Prio = 9999,

Module => ’Kernel :: Output : :HTML: : NavBarModuleAdmin ’ ,
}

B

103

9 ENTWICKELTE MODULE 9.5 DTSVirtualHost

800 OTRS :: Admin :: DTS Virtual Hosts o
Q" Iz /:(http://fjo-otrs.dts-online.net/sachbearbeiter ¥ | =
[OTRS] Felix J. Ogris (flo@its.de) 17:52:41 - 14.01.2008
@ . @
[Admin-Bereich]
Benutzer & Gruppen & Rollen Queue & Antworten System Sonstiges

[
[
[
[
[
1 [1
[
[
[
[
[

[DTsvmalHam]

Andern: Alualisieren:

fjo-otrs.dts-online.net Name: fjo-otrs.dts-online.net
test-otrs.dts-online.net
Agent URL: sachbearbeiter

Customer URL:

_Andern | pypyie R

public
Hinzufigen: Soap URL: soap
Add a new virtual host. Secure: Use HTTPS
Hinzufugen | IP address (for HTTPS):
Schemna Standard .
Galtig: giiltig =

Aktualisieren

Powered by OTRS 2.2 3

Fertig

Abbildung 18: Administration der Virtualhosts

104

9 ENTWICKELTE MODULE 9.6 DTSMaster

9.6. DTSMaster
9.6.1. Beschreibung

Das Paket DTSMaster dient zum Einrichten und Betrieb mehrerer OTRS-Instanzen auf
einer gemeinsamen Plattform. Die Grundidee liegt im Einsatz eines weiteren Apache-
Prozesses, der als Proxyserver betrieben wird. Er nimmt zunéchst stellvertretend fiir alle
OTRS-Instanzen Anfragen entgegen und reicht diese dann aufgrund des angefragten
Hostnamens an den Webserver der jeweiligen OTRS-Instanz weiter. Anfragen an per
HTTPS geschiitzte OTRS-Instanzen beantwortet der entsprechende Webserver hingegen
direkt. DTSMaster greift nicht auf OTRS-Funktionen oder -Module zuriick, da es nicht
im Kontext einer OTRS-Instanz lduft. Das Paket umfasst die folgenden Komponenten:

FB o6 X xterm

]

Baze settings]

OTRS administrator 1

Operating system settings }

Apache settings 1

Database settings }

« | e

Abbildung 19: DTSMaster.pl zum Anlegen neuer OTRS-Instanzen

DTSMaster.pm ist die zentrale Bibliothek und stellt abstrahierende Funktionen zum
Zugriff auf die PostgreSQL-Datenbank, zum Anlegen von Betriebssystembenutzern
und -gruppen, und zum Anlegen®® einer neuen OTRS-Instanz bereit. Da séamtli-
che Konfigurationen auf XSLT-Templates basieren, verwendet DTSMaster.pm die
beiden Module XML: : LibXML sowie XML: : LibXSLT

DTSMaster.pl ist ein meniigesteuertes Kommandozeilenprogramm zum FEinrichten ei-
ner neuen OTRS-Instanz (s. Abbildung 19). Zur Darstellung der Meniis wird das
eingebettete Package DTSDisplay verwendet, welches wiederum das externe Modul
Dialog verwendet. DTSDisplay stellt einfache GUI-Elemente wie Eingabefehler
oder Hinweisboxen bereit

DTSMasterCron.pl wird periodisch iiber den Systemdienst cron ausgefiithrt und schreibt
Konfigurationsdateien fiir den lokalen Postfixserver und alle Apache-Instanzen (ins-

ZDiese Funktion ist derzeit noch nicht vollstéindig, es fehlen das Befiillen der Datenbank und des
Homeverzeichnisses der neuen Instanz mit Hilfe einer als Vorlage dienenden, ungenutzten OTRS-
Installation.

105

9 ENTWICKELTE MODULE 9.6 DTSMaster

besondere den Proxyserver). Ausserdem legt dieses Skript SSL-Zertifikate und -
Schliissel an. DTSMasterCron.pl greift auf DTSTheme und DTSVirtualHost von
jeder OTRS-Instanz zuriick. Die jeweiligen Dienste werden nur neu gestartet, wenn
sich ihre Konfiguration geéndert hat.

DTSMaster.sql beschreibt die Relation dts_master, in der alle OTRS-Instanzen einer
Plattform verzeichnet sind

DTSWeb.pm stellt die Schnittstelle zwischen Webserver und OTRS dar. Es wird in
jeder OTRS-Instanz verwendet, um unnétige CGI-Aufrufe zu vermeiden

dtspreload.pl wird wie DTSWeb.pm in jeder OTRS-Instanz eingesetzt, um bei Start des
jeweiligen Webservers alle OTRS-Module zu laden.

Ferner beinhaltet das Paket DTSMaster ein angepasstes Startskript fiir den Apache
Webserver, welches im Gegensatz zum Original das Starten mit den Rechten eines un-
priviligierten Benutzers erlaubt.

106

9 ENTWICKELTE MODULE 9.7 DTSAddress

9.7. DTSAddress
9.7.1. Beschreibung

Das Modul DTSAddress dient zur vereinfachten Weiterleitung von Tickets an ande-
re OTRS-Instanzen. Es basiert auf den mitgelieferten Modulen AgentTicketForward
und AgentTicketEmail sowie deren Templates. Diese Module verlangen jedoch, dass
die Empfiangeremailadresse entweder eingegeben oder aus einem Adressbuch heraus ge-
sucht werden muss. DTSAddress bietet dem Administrator einer OTRS-Instanz jedoch
die Moglichkeit, zentral ein Adressbuch zu pflegen. Dieses verkniipft die Namen von
OTRS-Instanzen, an die Tickets delegiert werden sollen, mit deren Emailadressen. In

ann OTRS :: Ticket :: Inhalt :: 080114035

\]‘

k(j—‘ v /;' http://fjo-otrs.dts-online.net/sachbearbeiter?Action=AgentTicketZoom&TicketD=86 v | =

|@ = 85 L% ¢) 3 & & @ 8] 2

Abmelden Queue-Ansicht Telefor-Ticket E-Mail-Ticket Suche Kunde 3 Sammel-Aktion Neue Nachri

(0) Gesperrte Tickets (1)

[Inhalt Ticket#: 080114035] Hardwareproblem [Alter: 0 Minute]
Zurtck - Sperren - Hi - Drucken - Prioritdt - Freie Felder - Verkniipfen - Besitzer - Kunde - Motz - Erstell:14.01.2008 23:03:24
Zusammenfassen - Warten - SchlieRen - Delegate

|=-o>2_K kwnde {£-170i1 an extera) (iisr} Feliv S Oeriz ¥ J- Hrdvareproflem - J4 81 2008 2T 0524

Status: neu

“ . e Sperre: frei
‘Von: Felix J. Ogris’ <._Jn@dls.de> Prioritat el
An: DTS TTS <otrs@fjo-otrs.dts-online.net> Queue: ES T W
Betreff: Hardwareproblem Kundend#: @drs.de

Zeiv 0 Zugewiesene 0

Erstell: 14.01.2008 23:03:24

Zeit
Drucker druckt nicht mehr! Besitzer: root@localhost

(Admin OTRS)

Verknipft
{(Normal):
Verkniipft
(Eltern):

Verknupft

(Kinder):
Fertig

Abbildung 20: Ticketansicht mit der Schaltfliche zum Delegieren

der Ticketansicht hat ein Bearbeiter somit die Moglichkeit, die registrierten Instanzen
ohne Umwege aus einem Dropdown-Menii auszuwéhlen. Das Modul besteht aus sechs
Komponenten:

DTSAddress.pgsql.sql stellt die Relation dts_address bereit, die Namen von anderen
OTRS-Instanzen deren Emailadressen zuordnet

DTSAddress.pm abstrahiert den Zugriff auf diese Relation und stellt mit der Klasse
Kernel: :System: :DTSAddress folgende Methoden bereit:

AddressList zum Auslesen von OTRS-Instanzen und deren Emailadressen
AddressAdd zum Hinzufiigen einer neuen OTRS-Instanz und deren Emailadresse
AddressModify zum Aktualisieren einer OTRS-Instanz und deren Emailadresse

DTSAddressAdmin.pm stellt das Frontendmodul zum Administrieren von OTRS-In-
stanzen und deren Emailadressen dar

DTSAddress.dtl beinhaltet das Template fiir die Administrationsoberfliche

AgentTicketDelegate.pm stellt das Frontendmodul zur Delegation von Tickets dar. Es
prisentiert dem Anwender eine Maske, in der das Zielsystem ausgewéhlt und der
Inhalt des Tickets vor dem Absenden bearbeitet werden kann, versendet das Ticket
und trégt eine entsprechende Notiz in der Tickethistorie ein

AgentTicketDelegate.dtl ist das Template fiir AgentTicketDelegate.pm.

107

9 ENTWICKELTE MODULE 9.7 DTSAddress

000 OTRS :: Ticket : Delegate :: 080114035

—y
Gyl ¥ (Q—‘ - /?' http:/ /fjo-otrs.dts-online.net/sachbearbeiter?Action=AgentTicketDelegate&TicketD=86 ¥ =
[Delegate: 080114035]
Zurtick -
Optionen
An: -
Betreff: Hardwareproblem
Optionen: [é“Recmschreibgru:unt‘]
Text "Felix J. Ogris" <fjoldts.de> wrote on 2008-01-14 23:03:24:
Drucker druckt nicht mehr!
Anlage:
Nachster Status des offen =
Tickets:
Warten bis (fur warten* | 15 «| |01 ~| (2008 ~|-|23 ~|: 04 ~ |
Status): W
Zeiteinheiten
{Arbeitseinheiten):

Delegate ticket! &
v

Fertig

Abbildung 21: Ticketdelegation

9.7.2. Konfigurationsparameter

Das Modul DTSAddress greift auf einen eigenen Konfigurationshash unterhalb von
Ticket::Frontend: :AgentTicketDelegate zu. Folgende Parameter werden dabei ab-
gefragt:

RequiredLock gibt an, ob das Ticket durch den Agenten gesperrt sein muss, um es
delegieren zu kénnen

StateDefault gibt an, welcher Ticketstatus per default ausgewéhlt ist.
Zusatzlich greift das Modul auf folgende Parameter zu:

Ticket::Frontend::AccountTime bestimmt, ob eine Bearbeitungszeit eingegeben wer-
den muss

SpellChecker gibt an, ob die Rechtschreibpriifung angezeigt werden soll.

Zusétzlich muss das Administrationsfrontend DTSAddressAdmin in der Konfiguration
verankert werden, um es iiber die Weboberfldche aufrufen zu kénnen:

$Self —>{’Frontend :: Module ’}—>{’DTSAddressAdmin’} = {
Group => [’admin’ |,
NavBarName => ” Admin” ,
NavBarModule => {
Name => ’'DTS_Addresses’,
Block => ’'Block4’,
Prio = 9999,

108

9 ENTWICKELTE MODULE 9.7 DTSAddress

00 OTRS :: Admin :: DTS Addresses —

v 1\(3—‘ v /;‘ http:/ /flo-otrs.dis-online.net/sachbearbeiter v | =

Benuizer & Gruppen & Rollen Queue & Antworten System Sonstiges
[Benutzer] [Queue] [&nrede] [Postiaster Filter]
[Gruppen] [antworten] [Signatur] [Generichgent]
[Benutzer <-» Gruppen | [Antworten <- > Quaues | [E-Iail ddressen] [édmin-Benachrichtigung]
[Kunden Benutzer | [Auto Antworten | [Benachrichtiqung] [Sitzungsverwaltung |
[Kunden-Firma] [&uto Antworten <- > Queues | [Tvp] [Performance Log |
[Kunden Benutzer <- > Gruppen] [énlagen] [Status | [Swatern Log]
[Kunden Benutzer <-» Services] [Anlagen <-» Antworten | [Service] [S0L Box |
[Rallen] [DTS Freetext] [5La] [SysConfig]
[Rollen <> Benutzer] [S4MIME] [Paket Yerwaltung]
[Rollen <-> Gruppen] [PGP] [DTS Addresses]

[DTS Wirtual Host] [DTS SOAP User]

[DTS Theme]

[DTS Addresses]
Andern: Hinzufigen:
Druckerlieferant Name: 0TS Backoffice

Address: |backoffice@dts. de|

Galtig: | giitig -

Andern
Hinzufigen

Hinzufigen:

Add a new address.

Hinzufigen

Powered by OTRS 2.2.3

Fertig

Abbildung 22: Adressbuch fiir Ticketdelegationen

Module => ’Kernel :: Output : :HTML: : NavBarModuleAdmin ’ ,

—

%
Das Perlmodul AgentTicketDelegate.pm ist aufwendiger einzubinden. Zunéchst muss
es als generelles Frontendmodul deklariert werden:
$Self —>{" Frontend :: Module” }—>{” AgentTicketDelegate”} = {
"NavBarName’ => ’'Ticket ’,
"Description’ => ’Ticket_Delegation’,
"Title’ => ’'Delegate’
b
Damit es in der Statusleiste in der Ticketansicht erscheint, muss es ferner als MenuModule
eingebunden werden:
$Self —>{" Ticket :: Frontend : : MenuModule” }—>{"999— Delegate” } = {
”Action” => ” AgentTicketDelegate” ,
”Module” => ” Kernel :: Qutput : :HIML: : TicketMenuGeneric” ,
?Link” => ’Action=AgentTicketDelegate&TicketID=$QData{” TicketID”} ",
”Description” => ”Delegate_ticket _to_another . OTRS_instance”,
”"Name” => " Delegate”,
b
Ausserdem miissen wie fiir jedes Ticketmodul die moglichen Statustypen vorgegeben
werden:

109

9 ENTWICKELTE MODULE 9.7 DTSAddress

$Self —>{" Ticket :: Frontend : : AgentTicketDelegate” }—>{” StateType”} = \
[7open”, 7closed” |;

110

9 ENTWICKELTE MODULE 9.8 DTSSoapUser

9.8. DTSSoapUser
9.8.1. Beschreibung

Das Modul DTSSoapUser stellt eine SOAP-Schnittstelle und eine HT TP-GET-Schnitt-
stelle zum Anlegen von Kunden und Projekten aus anderen Buchhaltungs- und Projekt-
systemen wie dem Work@Web bereit. Die clientseitigen SOAP-Stubs kénnen aus einer
automatisch erzeugten WSDL-Beschreibung generiert werden. Zudem kann der authen-
tifizierte Zugriff auf diese Schnittstellen auf bestimmte IP-Adressen beschrinkt werden.
Das Modul besteht aus sieben Komponenten:

N.YoYe OTRS :: Admin :: DTS SOAP Users = |

- @—l v /;‘ http:/ /fio-otrs.dts-online.net/sachbearbeiter ML

Benutzer & Gruppen & Rollen Queue & Antworten Syslem Sonsu'@s
[Benutzer] [Quzue | [Anreds | [PostMaster Filter]
[Gruppen] [Antwarten] [Signatur] [Genericégent 1

[Benutzer <-> Gruppen] [ntworten <-» Queues | [E-Mail Adressen] [Admin-Benachrichtiqung]
[Kunden Benutzer] [éuto Antworten | Benachrichtiqung] itzungaverwaltung |
1

]

Auto Antworten [[
[Kunden-Firma | [futo &ntworten <-» Queues] [Tup [Performance Log]
[Kunden Eenutzer <-> Gruppen] [&nlagen] [Status] [Systern Log |
[Kunden Benutzer <-> Services] [Anlagen <= > &ntworten] [Service] [501 Box]
[Rallen] [DTS Freetext] [5La] [SysConfig]
[Rollen <-» Benutzer] [5/MIME] [Paket Yerwsltung]
[Rallen <- > Gruppen | [PGE] [DTS Addresses |
[DTS Yirtusl Host] [DTS S0&F User |
[DTS Theme]
[DTS SOAP Users]
Andern: Hinzufigen:
Name: SoapBenutzer1
Passwort: geheim
IP addresses: 0.0.0.0/0
Andern
Hinzufagen: Methods: CreateContact: [+
Add a new soap user. Ggeatstietoc |-
Hinzufiigen CreateProject: |+
WSDL: v
Gltig: giiltig -

Hinzufiigen

Powered by OTRS 2.2.3

Fertig

Abbildung 23: Anlage eines neuen SOAP-Benutzers

DTSSoapUser.pgsql.sql definiert 3 Relationen:
dts_soap_user fiihrt Benutzernamen und Passworter zur Authentifizierung an der
SOAP-Schnittstelle

dts_soap_user_address referenziert die Benutzernamen aus dts_soap_user und ver-
bindet sie mit Netzadressen, aus denen ein SOAP-Benutzer sich verbinden darf

dts_soap_user_method referenziert die Benutzernamen aus dts_soap_user und ver-
bindet sie mit Methodennamen, die ein SOAP-Benutzer aufrufen darf.

Mit diesem Datenmodell kann ein SOAP-Benutzer auf IP-Adressbereiche und Funk-

tionen eingeschriankt werden

DTSSoapUser.pm abstrahiert den Zugriff auf die o.g. Relationen und stellt in der
Klasse Kernel::System: :DTSSoapUser die Methoden SoapUserList zum Abruf

111

9 ENTWICKELTE MODULE 9.8 DTSSoapUser

aller SOAP-Benutzer inklusive ihrer Rechte, SoapUserAdd zum Hinzufiigen und
SoapUserModify zum Aktualisieren eines SOAP-Benutzers bereit. Zudem wird die
Methode IsSoapUserAllowed exportiert, die anhand der ihr {ibergebenen Parame-
ter Benutzername, Passwort, SOAP-Funktion und Clientadresse iiberpriift, ob der
SOAP-Benutzer zum Aufruf der Funktion berechtigt ist

DTSSoapUserAdmin.pm stellt das Frontendmodul zur Pflege von SOAP-Benutzern dar
DTSSoapUser.dtl ist das Template fiir den Administrationsbereich

DTSSoap.pm implementiert die eigentlichen SOAP-Funktionen und dient somit auch
zur Erstellung der WSDL-Beschreibung

DTSWsdl.pm erzeugt einerseits die WSDL-Beschreibung fiir das o.g. Perlmodul
DTSSoap.pm. Andererseits stellt es fiir das Frontendmodul DTSSoapUserAdmin.pm
die Methode MethodList bereit, die ein Array mit allen verfiigharen SOAP-Funk-
tionen liefert

InterfaceSoapUser.pm ist das Bindeglied zwischen Webserver und den SOAP-Funktio-
nen in DTSSoap.pm. Sie definiert die Klasse
Kernel: :System: :Web: : InterfaceSoapUser. Bei einem HTTP-GET-Aufruf wer-
tet die Methode Run selbst alle iibergebenen Parameter aus und ruft dann die
gewiinschte Funktion in DTSSoap.pm auf. Ein POST-Aufruf, der einen SOAP-Re-
quest darstellt, wird von einer Instanz von SOAP: : Transport: :HTTP bearbeitet

Das Modul DTSSoap . pm definiert die Klasse Kernel: :DTSSoap. [hre Memberfunktionen
stellen die nach aussen freigegebenen SOAP-Funktionen dar. Sie haben folgende Struk-
tur:

=begin WSDL

DOC Dies ist eine Testfunktion
_IN Username $string Benutzername
_IN Password $string Passwort
ouT $string Riickgabewert
=end WSDL

=cut

sub HelloWorld ()

{
my $Self = shift;
my $User = shift;
my $Pass = shift;
Username und Passwort prifen
return SOAP:: Data—>type (” string”)
—>name (” HelloWorldReturn”)
—>value (” hello , .world”);
}

Der vorangestellte POD-Block wird bendtigt, um daraus eine WSDL-Beschreibung zu
erzeugen. Das Flag DOC zeigt dabei einen Kommentar an, der in das WSDL-Dokument
zwecks Lesbarkeit {ibernommen werden kann. _IN und _0UT bezeichnen die der Funktion
tibergebenen bzw. die von ihr zuriickgelieferten Datentypen, in diesem Falle einfache
Zeichenketten. Der Riickgabewert der Funktion HelloWorld ist zwar lediglich ein String,
muss aber aufwendig codiert werden, damit in Java geschriebene SOAP-Clients keinen

112

9 ENTWICKELTE MODULE 9.8 DTSSoapUser

Fehler werfen?*. Das resultierende SOAP-Fragment sieht in diesem Falle wie folgt aus:

<HelloWorldResponse>
<HelloWorldReturn
xsi:type="xsd:string”>hello , world</HelloWorldReturn>
</HelloWorldResponse>

Wird hingegen die Zeichenkette direkt per return zuriickgegeben, so ergibt sich folgendes
SOAP-Teilstiick:

<HelloWorldResponse>
<s—gensym3
xsi:type="xsd:string”>hello , world</s—gensym3>
</HelloWorldResponse>

Die WSDL-Beschreibung wird on-the-fly vom Modul DTSWsdl.pm erzeugt. Es greift auf
das Package Pod: :WSDL zuriick:
my $WsdlObject = Pod :: WSDL—>new (

source => ”Kernel :: DTSSoap” ,

location => ”"http://fjo—otrs.dts—online.net/soap”,

withDocumentation = 1,

use => $Pod ::WSDL: : LITERAL_USE,

pretty = 1

);
my $WsdlDocument = $WsdlObject—>WSDL;

Der Konstruktor erwartet folgende Parameter:

source gibt das Modul an, fiir das die WSDL-Beschreibung erzeugt werden soll. Dieses
Modul sollte iiber entsprechend formatierte POD-Abschnitte verfiigen

location gibt die Adresse an, unter der die SOAP-Funktionen abgerufen werden kénnen

withDocumentation gibt an, ob die per DOC gekennzeichneten Dokumentationen der
POD-Blocke in das WSDL-Dokument iibernommen werden sollen

use zeigt die Serialisierungsart an. Per default wird RPC/encoded verwendet, im Beispiel
wird hingegen RPC/literal eingesetzt. Document /literal wird nicht unterstiitzt

pretty zeigt an, ob das WSDL-Dokument zwecks Lesbarkeit mit Whitespaces am Zei-
lenanfang formatiert werden soll.

Im Scalar $Wsd1lDocument steht somit die erzeugte WSDL-Beschreibung zur Verfiigung.
Die Methode Run in der Klasse Kernel: :System: :Web: : InterfaceSoapUser bzw. im
Perlmodul InterfaceSoapUser.pm weist folgende Struktur auf:

sub Run ()
my $RequestMethod = $ENV{REQUESTMETHOD } ;
if ($RequestMethod eq "GEI”) {

Parameter 7Action” auswerten, dann entsprechende Methode
in DTSSoap.pm aufrufen

}

else {
my $SoapCGIObject = SOAP:: Transport : :HTTP: : CGI-—>new () ;
$SoapCGIObject—>dispatch_to (” Kernel : : DTSSoap”) ;
$SoapCGIObject—>handle ();

}

}

24Dies herauszufinden hat einige Tage in Anspruch genommen und konnte nur mit Hilfe eines Netzwerk-
analyseprogrammes (http://www.wireshark.org) festgestellt werden.

113

http://www.wireshark.org

9 ENTWICKELTE MODULE 9.8 DTSSoapUser

In der Umgebungsvariablen $ENV{REQUEST_METHOD} wird die Art des Webseitenaufru-
fes mitgeteilt. Findet ein HTTP-GET-Aufruf statt, ist dort der Wert GET hinterlegt.
In diesem Fall wertet die Funktion den Parameter Action aus und ruft die entspre-
chende Methode in DTSSoap.pm auf. Bei einem SOAP-Aufruf per HTTP-POST hin-
gegen wird eine Instanz von SOAP: :Transport: :HTTP: :CGI verwendet. Diese benétigt
zuerst den Namen des Moduls, in dem sich die SOAP-Funktionen befinden, hier also
Kernel: :DTSSoap. Anschliessend vollzieht die Methode handle prinzipiell die gleichen
Schritte wie der HTTP-GET-Zweig, indem die gewiinschte Funktion aus der SOAP-
Anfrage extrahiert und aufgerufen wird.

Durch den Einsatz von WSDL koénnen die bereitgestellten SOAP-Funktionen relativ
leicht in andere Projekte eingebunden werden (s. Abbildung 24). Anschliessend geniigt

Add Service Reference K E3

To see a lisk of available services on a specific server, enker a service URL and click Go, To browse For
available services, click Discover,

Address:
ktp:fiFjo-okrs. dts-online. netfsoap? Action="W3DL& ser=test&Pass=test [efa) | | Discover |v|
Services: Opetations:
ERO] | KernelDTSSnapHandlerService W CreateContact
e KernelDTSSaapHandler W reateDebtor

W CreateProject

1 service(s) Found at address 'http: f/Fjo-otrs. dts-online. netfsoap?Action="W3DL& ser=test&Pass=test',

Mamespace:
foTRS

Advanced. .. | QI I Cancel

4

Abbildung 24: Import der SOAP-Funktionen in Microsoft Visual Studio

folgendes Minimalprogramm (hier in C#), um die Funktion CreateProject des OTRS
aufzurufen:

using System ;

using System. Collections . Generic;

using System.Lingq;

using System . Text;

namespace SoapTest

{
class Program
{
static void Main(string [|] args)
{
const String User = "test”,
Pass = "test”,

114

9 ENTWICKELTE MODULE 9.8 DTSSoapUser

Projekt = ”Neues_.Projekt”
Kunde 711117

String Result;

OTRS. KernelDTSSoapHandlerClient otrs;

otrs = new OTRS. KernelDTSSoapHandlerClient ();
Result = otrs.CreateProject (User, Pass, Projekt, Kunde);

System . Console. WriteLine (” Projektnummer: .” + Result);
System . Console . ReadLine ();

}
}
}
Aquivalent ist folgendes Beispiel in PHP:
<?
$wsdl = 7http://fjo—otrs.dts—online.net/soap?Action=WSDL&”
”? User=test&Pass=test”;
$otrs = new SoapClient ($wsdl);
$nummer = $otrs—>CreateProject (” test”, "test”, "Neues_Projekt”, 711117);
echo ”Projektnummer:.” . $nummer . ”\n”;
7>

9.8.2. Konfigurationsparameter

In der Konfiguration muss lediglich das Frontendmodul DTSSoapUserAdmin registriert

werden:
$Self —>{’Frontend :: Module’}—>{’DTSSoapUserAdmin’} = {
Group => [’admin’],

NavBarName => ” Admin” ,
NavBarModule => {
Name => ’DTS_SOAP_User’,
Block => ’'Block4’,
Prio => 9999,
Module => ’Kernel :: Output : : HIML: : NavBarModuleAdmin ’ ,

115

9 ENTWICKELTE MODULE 9.9 DTSNotifyAgentAsterisk

9.9. DTSNotifyAgentAsterisk
9.9.1. Beschreibung

Das Modul DTSNotifyAgentAsterisk kann einen Bearbeiter telefonisch auf ein eskalier-
tes Ticket hinweisen. Hierzu ist ein Asteriskserver®® notwendig, der skriptgesteuert iiber
sein Asterisk Manager Interface (AMI) Telefonate aufbauen kann. Zudem muss auf
dem Asteriskserver das Programm Festival?® zur Sprachsynthese installiert sein. Zum
Zugriff auf das Asterisk Manager Interface kommt seitens des OTRS das Perlmodul
Asterisk: :Manager zum Einsatz. Es wird wie folgt verwendet:

use Asterisk :: Manager;
my $AMIObject = Asterisk :: Manager—>new () ;

set connection parameters for ami server
$AMIObject—>host (" asterisk . dts.de”);
$AMIObject—>port (5038);

$AMIODbject—>user (" otrs”);
$AMIObject—>secret (" geheim”) ;

if (!$AMIObject—>connect()) {
Fehler
}

my %AMIResult = $AMIObject—>sendcommand (
Action => ” Originate”,
Channel => "CAPI/g0—-9/052211011000” ,
Exten => 71234567 ,
Priority = 717,
Async => 707,
Timeout => 15000,
Context => ”"default”,
Variable => ”TicketNumber=307122218| Text=A_ticket._is_escalated”

);

Nachdem dem ein neues Objekt instanziert wurde, werden die Verbindungsparameter
gesetzt. Das AMI basiert auf einer herkommlichen TCP-Verbindung, {iber die Befehle
im Klartext abgesetzt werden. Die Methode sendcommand kapselt sémtliche Protokoll-
details. Sie erwartet folgende Parameter:

Action gibt an, welche Aktion ausgefithrt werden soll. Der Wert Originate weist den
Asteriskserver an, ein Gesprich zwischen zwei Teilnehmern aufzubauen

Channel stellt einen Endpunkt dieses Telefonates dar, ndmlich denjenigen Teilnehmer,
der angerufen wird, hier die Telefonnummer 05221-101-1000. Diese soll per ISDN-
Karte bzw. CAPI-Schnittstelle angerufen werden

Exten stellt die Nummer des Anrufenden dar. Fiir diesen Fall muss der Asteriskserver
so konfiguriert werden, dass unter der Nummer 123456 das Programm Festival zu
erreichen ist

Priority gibt die Prioritdt dieses Telefonates an

Async sollte den Wert 1 haben, wenn der Aufruf von sendcommand sofort zuriickkeh-
ren soll, 0, falls sendcommand erst zuriickkehren soll, wenn das Telefonat zustande
gekommen ist

Pnttp://www.asterisk.org
Zonttp://www.cstr.ed.ac.uk/projects/festival/

116

http://www.asterisk.org
http://www.cstr.ed.ac.uk/projects/festival/

9 ENTWICKELTE MODULE 9.9 DTSNotifyAgentAsterisk

Timeout gibt die Zeit in Millisekunden an, die sendcommand wartet, bis das Telefonat
zustanden gekommen ist

Context gibt den Asterisk-Kontext (sprich: die ”Telefonie-Routingtabelle”) fiir diese
Verbindung an

Variable gibt eine Liste von per senkrechtem Strich getrennten Schliissel-/Wertepaa-
ren an, die im Dialplan (sprich: in der Telefonie-Routingtabelle) als Variablen zur
Verfiigung stehen. Diese Variablen werden durch den Dialplan dem Programm
text2wave iibergeben, welches daraus Sprachsamples erzeugt und somit dem an-
gerufenen Bearbeiter iiber den Ticketstatus informiert.

Der Dialplan des Asteriskservers muss fiir dieses Beispiel um folgende Zeilen erweitert
werden?’:

exten => 123456,1,Answer()

exten => 123456,n,Set(FileBase=/tmp/otrs-${TicketNumberl})

exten => 123456,n,Set (FileType=ulaw)

exten => 123456,n,Set(FileName=${FileBasel}.${FileTypel})

exten => 123456,n,System([-e \’${FileName}\’ 1 || echo \’${Text}\’ [\
text2wave -otype \’${FileType}\’ -o \’${FileName}\’)

exten => 123456,n,Playback(${FileBase})

exten => 123456,n,Hangup()

DTSNotify Agent Asterisk basiert zu grossen Teilen auf dem mitgelieferten Modul No-
tify AgentGroup With WritePermission, welches jedoch Emails an Bearbeiter sendet.

9.9.2. Konfigurationsparameter

Das Modul DTSNotifyAgentAsterisk wertet folgende Konfigurationsparameter aus:

DTSAsterisk::AMIHostname gibt den Hostnamen des Asteriskservers an

DTSAsterisk::AMIPort gibt den Port des Asterisk Manager Interfaces an

DTSAsterisk::AMIUsername gibt den Benutzer an, der iiber das AMI Gespriche auf-
bauen darf

DTSAsterisk::AMIPassword stellt das Passwort fiir den Benutzer dar

DTSAsterisk::Channel gibt das Device (ISDN-Karte o.4.) an, iiber das die Bearbei-

ter telefonisch erreicht werden konnen, z.B. CAPI/g0-9/<PHONE_NUMBER>, wobei
<PHONE _NUMBER> durch die Rufnummer des jeweiligen Bearbeiters ersetzt wird

DTSAsterisk::Extension gibt die Durchwahl des Programmes tert2wave aus dem Festi-
valpaket an

DTSAsterisk:: Timeout gibt die Zeit in Millisekunden an, die maximal auf das Zustan-
dekommen des Gespriches gewartet werden soll

DTSAsterisk::Context gibt die Telefonie-Routingtabelle an

DTSAsterisk::Festival TextKey spezifiziert den Namen der Variablen, unter der der Di-
alplan den zu synthetisierenden Text erwartet

DTSAsterisk::FestivalText gibt den Text an, der synthetisiert werden soll, z.B.
Attention! Attention! Ticket number <TICKET _NUMBER> is escalated!, wo-
bei <TICKET_NUMBER> durch die jeweilige Ticketnummer ersetzt wird

DTSAsterisk::Festival TicketNumberKey stellt den Namen der Variablen dar, unter der
der Dialplan die Ticketnummer erwartet

27S. ()

117

A. Literatur

A. Literatur

[Ahmed 2006] AHMED, Tarek: Pod::WSDL - Creates WSDL documents from (extended)
pod, Oktober 2006. — Manpage zum Perlmodul Pod::WSDL

[Almquist u.a. 2006] ALMQUIST, Kenneth u.a.: sh — command interpreter (shell), Juli
2006. — Manpage zur sh

[Biron u. Malhotra 2004] BIRON, Paul V. ; MALHOTRA, Ashok: XML Schema Part
2: Datatypes Second Edition. Version: October 2004. http://www.w3.org/TR/
xmlschema-2/, Abruf: 2008-01-06

[Butek 2005] BUTEK, Russell: Which style of WSDL should I use? Version: Mai 2005.
http://www.ibm.com/developerworks/webservices/library/ws-whichwsdl/,

Abruf: 2007-12-15

[Christiansen 2006] CHRISTIANSEN, Tom: peritoot - Tom’s object-oriented tutorial for
perl, Januar 2006. — Manpage zu Perl 5.8.8

[Clark 1999] CLARK, James: XSL Transformations (XSLT). Version: November 1999.
http://www.w3.org/TR/xslt/, Abruf: 2008-01-07

[Costales u. Allman 2002] COSTALES, Bryan ; ALLMAN, Eric: sendmail. O’Reilly, 2002.
— ISBN 1-56592-839-3

[Diverse a] DIVERSE: OTRS API (HTML Developer API). http://dev.otrs.org/,
Abruf: 2007-12-15

[Diverse b] DIVERSE: Product Photos. http://h18000.wwwl.hp.com/products/
quickspecs/photos/photos.html, Abruf: 2007-12-15. — HP Product Bulletin

[Diverse c] DIVERSE: WSDL Tutorial. http://www.w3schools.com/wsdl/, Abruf: 2008-
01-07

[Diverse d] DIVERSE: XML Schema Tutorial. http://www.w3schools.com/schema/,
Abruf: 2008-01-06

[Diverse e] DIVERSE: XSLT Tutorial. http://www.w3schools.com/xsl/, Abruf: 2008-
01-06

[Diverse 2005a] DIVERSE: openssl - OpenSSL command line tool, Februar 2005. — Man-
page zu OpenSSL 0.9.7d

[Diverse 2005b] DIVERSE: tcsh - C' shell with file name completion and command line
editing, Mérz 2005. — Manpage zur tcsh 6.14.00

[Diverse 2006a] DIVERSE: perifunc - Perl builtin functions, Januar 2006. — Manpage zu
Perl 5.8.8

[Diverse 2006b] DIVERSE: perlop - Perl operators and precedence, Januar 2006. — Man-
page zu Perl 5.8.8

[Diverse 2006c| DIVERSE: PostgreSQL 8.2.5 Documentation. (2006). http://www.
postgresqgl.org/docs/8.2/static/index.html, Abruf: 2008-01-01

[Diverse 2007a] DIVERSE: Berkeley Software Distribution. (2007), Dezember. http:
//de.wikipedia.org/wiki/Berkeley Software Distribution, Abruf: 2007-12-29

118

http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
http://www.ibm.com/developerworks/webservices/library/ws-whichwsdl/
http://www.w3.org/TR/xslt/
http://dev.otrs.org/
http://h18000.www1.hp.com/products/quickspecs/photos/photos.html
http://h18000.www1.hp.com/products/quickspecs/photos/photos.html
http://www.w3schools.com/wsdl/
http://www.w3schools.com/schema/
http://www.w3schools.com/xsl/
http://www.postgresql.org/docs/8.2/static/index.html
http://www.postgresql.org/docs/8.2/static/index.html
http://de.wikipedia.org/wiki/Berkeley_Software_Distribution
http://de.wikipedia.org/wiki/Berkeley_Software_Distribution

A. Literatur A. Literatur

[Diverse 2007b] D1VERSE: Dokumentation zum Apache HTTP Server Version 2.2. (2007).
http://httpd.apache.org/docs/2.2/, Abruf: 2008-01-01

[Diverse 2007c] DIVERSE: Extensible Markup Language. (2007), Dezember. http:
//de.wikipedia.org/wiki/XML, Abruf: 2007-12-17

[Diverse 2007d] DIVERSE: mod_perl: Documentation. (2007), Dezember. http://perl.
apache.org/docs/index.html, Abruf: 2008-01-01

[Diverse 2007¢] DIVERSE: Perl. (2007), Dezember. http://de.wikipedia.org/wiki/
Perl, Abruf: 2007-12-15

[Diverse 2007f] DIVERSE: Unix-Shell. (2007), Dezember. http://de.wikipedia.org/
wiki/Unix-Shell, Abruf: 2007-12-27

[Eckstein 2000] ECKSTEIN, Robert: XML - kurz € gut. O’Reilly, 2000. — ISBN 3-89721—
219-6

[Kulchenko u. a. 2006] KULCHENKO, Paul ; RAy, Randy J. ; REESE, Byrne: SOAP::Lite
- Perl’s Web Services Toolkit, August 2006. — Manpage zum Perlmodul SOAP::Lite

[Eric Lévénez 2007] LEVENEZ Eric: Uniz History. Version: Dezember 2007. http:
//www.levenez.com/unix/, Abruf: 2007-12-29

[Martin u. a. 2000] MARTIN, Didier ; BIRBECK, Mark ; KAy, Michael ; LOESGEN, Brian ;
PINNOCK, Jon ; LIVINGSTONE, Steven ; STARK, Peter ; WILL1AMS, Kevin ; ANDERSON,
Richard ; MOHR, Stephen ; BALILES, David ; PEAT, Bruce ; Ozu, Nikola: Professional
XML. Wrox, 2000. — ISBN 1-861003—-11-0

[Miinz u.a. 2007] MUNz, Stefan u.a.: SELFHTML 8.1.2. Version: Méarz 2007. http:
//de.selfhtml.org/, Abruf: 2007-12-16

[Ogris 2007] OGRis, Felix J.: Asterisk - ein Uberblick. Version: Januar 2007. http:
//www.ogris.de/docs/studienarbeit.pdf, Abruf: 2008-01-14

[Rowe u. Stonebraker 1987] ROWE, Lawrence A. ; STONEBRAKER, Michael R.: The
POSTGRES Data Model. Version: September 1987. http://s2k-ftp.cs.berkeley.
edu:8000/postgres/papers/ERL-M87-13.pdf, Abruf: 2008-01-01

[Schopplein u. a. 2007a] SCHOPPLEIN, Christian ; KAMMERMEYER, Richard ; ROTHER,
Stefan ; RAITH, Thomas ; STEINBILD, Burchard ; MINDERMANN, André ; EDENHOFER,
Martin ; KuHN, Christopher ; OSCHWALD, Henning ; HECHT, Manuel ; BAKKER, René
; BAUER, Bodo ; BOTTCHER, Hauke ; BOTHE, Jens: OTRS 2.2 - Admin Manual.
Version: 2007. http://ftp.otrs.org/pub/otrs/doc/doc-admin/2.2/en/pdf/otrs_
admin book.pdf, Abruf: 2007-12-15

[Schopplein u.a. 2007b] SCHOPPLEIN, Christian ; KAMMERMEYER, Richard ; Ro-
THER, Stefan ; RAITH, Thomas ; STEINBILD, Burchard ; MINDERMANN, André
; KuHN, Christopher ; EDENHOFER, Martin: OTRS 2.2 - Developer Manual.
Version: 2007. http://ftp.otrs.org/pub/otrs/doc/doc-developer/2.2/en/pdf/
otrs_developer book.pdf, Abruf: 2007-12-15

[Shohoud 2003] SHOHOUD, Yasser: RPC/Literal and Freedom of Choice. Version: April
2003. http://msdn2.microsoft.com/en-us/library/ms996466.aspx, Abruf: 2008-
01-08

119

http://httpd.apache.org/docs/2.2/
http://de.wikipedia.org/wiki/XML
http://de.wikipedia.org/wiki/XML
http://perl.apache.org/docs/index.html
http://perl.apache.org/docs/index.html
http://de.wikipedia.org/wiki/Perl
http://de.wikipedia.org/wiki/Perl
http://de.wikipedia.org/wiki/Unix-Shell
http://de.wikipedia.org/wiki/Unix-Shell
http://www.levenez.com/unix/
http://www.levenez.com/unix/
http://de.selfhtml.org/
http://de.selfhtml.org/
http://www.ogris.de/docs/studienarbeit.pdf
http://www.ogris.de/docs/studienarbeit.pdf
http://s2k-ftp.cs.berkeley.edu:8000/postgres/papers/ERL-M87-13.pdf
http://s2k-ftp.cs.berkeley.edu:8000/postgres/papers/ERL-M87-13.pdf
http://ftp.otrs.org/pub/otrs/doc/doc-admin/2.2/en/pdf/otrs_admin_book.pdf
http://ftp.otrs.org/pub/otrs/doc/doc-admin/2.2/en/pdf/otrs_admin_book.pdf
http://ftp.otrs.org/pub/otrs/doc/doc-developer/2.2/en/pdf/otrs_developer_book.pdf
http://ftp.otrs.org/pub/otrs/doc/doc-developer/2.2/en/pdf/otrs_developer_book.pdf
http://msdn2.microsoft.com/en-us/library/ms996466.aspx

A. Literatur A. Literatur

[Siever u.a. 1999] SIEVER, Ellen ; SPAINHOUR, Stephen ; PATWARDHAN, Nathan: Perl
in a Nutshell. O’'Reilly, 1999. — ISBN 1-56592-286-7

[Srinivasan 1997] SRINIVASAN, Sriram: Advanced Perl Programming. O’Reilly, 1997. —
ISBN 1-56591-220-4

[Srinivasan 1999] SRINIVASAN, Sriram: Fortgeschrittene Perl-Programmierung. O’Reilly,
1999. — ISBN 3-89721-107-6

[Thompson u. a. 2004] THOMPSON, Henry S. ; BEECH, David ; MALONEY, Murray ; MEN-
DELSOHN, Noah: XML Schema Part 1: Structures Second Edition. Version: October
2004. nttp://www.w3.org/TR/xmlschema-1/, Abruf: 2008-01-06

[Venema u.a. | VENEMA, Wietse u. a.: Postfix Documentation. http://www.postfix.
org/documentation.html, Abruf: 2008-01-01

[Wall u. Burke 2006] WALL, Larry ; BURKE, Sean M.: peripod - the Plain Old Documen-
tation format, Januar 2006. — Manpage zu Perl 5.8.8

[Wall u. a. 2000] WALL, Larry ; CHRISTIANSEN, Tom ; ORWANT, Jon: Programming Perl.
O’Reilly, 2000. — ISBN 0-596-00027-8

[Weinelt | WEINELT, Jiirgen: LaTeX-Befehlsreferenz, http://wuw.weinelt.de/latex/,
Abruf: 2007-12-17

120

http://www.w3.org/TR/xmlschema-1/
http://www.postfix.org/documentation.html
http://www.postfix.org/documentation.html
http://www.weinelt.de/latex/

B CD-ROM

B. CD-ROM

Die CD-ROM enthélt alle im Rahmen dieser Diplomarbeit erstellten Programme und
Skripte sowie die vorliegende Arbeit im PDF-Format.

121

	1 Prolog
	2 Hardware
	2.1 Entwicklungssystem
	2.2 Produktivsystem

	3 Betriebssystem
	3.1 Einführung in FreeBSD
	3.2 Installation
	3.3 Starten von Systemdiensten
	3.4 Portssystem

	4 Anwendungsprogramme
	4.1 Apache
	4.1.1 Einleitung
	4.1.2 Installation
	4.1.3 Konfiguration
	4.1.4 mod_perl2

	4.2 PostgreSQL
	4.2.1 Einleitung
	4.2.2 Installation
	4.2.3 Konfiguration

	4.3 Postfix
	4.3.1 Einleitung
	4.3.2 Installation
	4.3.3 Konfiguration

	4.4 OpenSSL

	5 Programmiersprachen
	5.1 Perl
	5.1.1 Aufruf
	5.1.2 Variablen
	5.1.3 Gültigkeitsbereich
	5.1.4 Operatoren
	5.1.5 Reguläre Ausdrücke
	5.1.6 Kontrollstrukturen
	5.1.7 Funktionen
	5.1.8 Module und Packages
	5.1.9 Objektorientiertes Programmieren
	5.1.10 Pragmatisches Perl
	5.1.11 Plain Old Documentation

	5.2 Shellscripting

	6 Auszeichnungssprachen
	6.1 XML
	6.1.1 DTD
	6.1.2 Namensräume
	6.1.3 XML Schema

	6.2 XSLT
	6.3 SOAP
	6.4 WSDL

	7 Datenbankabfragesprachen
	7.1 SQL

	8 OTRS
	8.1 Installation
	8.2 Administration
	8.3 Module
	8.4 Modulprogrammierung
	8.5 Templates

	9 Entwickelte Module
	9.1 DTSTicketNumber
	9.1.1 Beschreibung
	9.1.2 Konfigurationsparameter

	9.2 DTSLib
	9.2.1 Beschreibung
	9.2.2 Konfigurationsparameter

	9.3 DTSFreetext
	9.3.1 Beschreibung
	9.3.2 Konfigurationsparameter

	9.4 DTSTheme
	9.4.1 Beschreibung
	9.4.2 Konfigurationsparameter

	9.5 DTSVirtualHost
	9.5.1 Beschreibung
	9.5.2 Konfigurationsparameter

	9.6 DTSMaster
	9.6.1 Beschreibung

	9.7 DTSAddress
	9.7.1 Beschreibung
	9.7.2 Konfigurationsparameter

	9.8 DTSSoapUser
	9.8.1 Beschreibung
	9.8.2 Konfigurationsparameter

	9.9 DTSNotifyAgentAsterisk
	9.9.1 Beschreibung
	9.9.2 Konfigurationsparameter

	A Literatur
	B CD-ROM

