
Diplomarbeit zur Erlangung des Grades Diplom-Ingenieur (FH)

Fachhochschule Bielefeld
Erstprüfer: Prof. Dr. rer. nat. Christian Schröder

Zweitprüfer: Prof. Dr. math. Wolfgang Bunse

Integration des Troubleticketsystems OTRS
bei einem mittelständischen Unternehmen

Felix J. Ogris (fjo@ogris.de)
Matr.-Nr.: 203583

Datum der Abgabe: 15. Januar 2008

Erklärung entsprechend der ADPO vom 25.06.1982 § 26 Abs. 1

Ich versichere, dass ich die Diplomarbeit selbstständig verfasst und keine, als die von
mir angegebenen Hilfsmittel benutzt und bei Zitaten die Quellen kenntlich gemacht habe.

Mir ist bekannt, dass ich meine Diplomarbeit nach Ablauf der Aufbewahrungsfrist von
5 Jahren zurückbekommen kann.

Herford, 15.01.2008

Unterschrift

2

In dieser Diplomarbeit wird ein System entwickelt, welches mehrere Instanzen des
Open Ticket Request Systems OTRS auf einer Plattform bereitstellt. Die Instanzen sind
bis auf Betriebssystemebene gegeneinander isoliert, so dass das System mehrere OTRS-
Instanzen für Kunden bereitstellen kann. Mit Hilfe einer eigens entwickelten Erweiterung
können die Instanzen jedoch lose per Email gekoppelt werden. Zudem wird jede Instanz
mit einer SOAP-Schnittstelle ergänzt, mit der Projekte und Kundendaten aus anderen
Systemen automatisiert angelegt werden können. Für die Selbstverwaltung durch einen
Kunden wurden ausserdem zwei Erweiterungen erstellt, die es ermöglichen, eine Instanz
unter verschiedenen Webadressen erreichbar zu machen und die Benutzerschnittstelle zu
verändern. Vor der Darstellung der entwickelten Erweiterungen werden die vielfältigen
theoretischen Grundlagen diskutiert.

This diploma thesis presents a system which makes it possible to setup multiple in-
stances of the Open Ticket Request System OTRS on one platform. As these instances
are isolated against each other at the operating system level, one hardware platform can
be used for many customers. By using a self-developed extension those instances can
loosely be coupled by email. Each instance can be equipped with a self-developed SOAP
interface which allows the user to import customer data and projects from other sy-
stems. Two additional extensions allow the customers to modify the user interface to fit
their needs and to make each instance reachable under different hostnames. Prior to the
presentation of each self-developed extension a discussion of the theoretical background
is given.

Inhaltsverzeichnis Inhaltsverzeichnis

Inhaltsverzeichnis

1. Prolog 11

2. Hardware 13
2.1. Entwicklungssystem . 13
2.2. Produktivsystem . 13

3. Betriebssystem 15
3.1. Einführung in FreeBSD . 15
3.2. Installation . 16
3.3. Starten von Systemdiensten . 18
3.4. Portssystem . 18

4. Anwendungsprogramme 20
4.1. Apache . 20

4.1.1. Einleitung . 20
4.1.2. Installation . 20
4.1.3. Konfiguration . 21
4.1.4. mod perl2 . 23

4.2. PostgreSQL . 25
4.2.1. Einleitung . 25
4.2.2. Installation . 26
4.2.3. Konfiguration . 27

4.3. Postfix . 29
4.3.1. Einleitung . 29
4.3.2. Installation . 29
4.3.3. Konfiguration . 29

4.4. OpenSSL . 32

5. Programmiersprachen 36
5.1. Perl . 36

5.1.1. Aufruf . 36
5.1.2. Variablen . 37
5.1.3. Gültigkeitsbereich . 41
5.1.4. Operatoren . 41
5.1.5. Reguläre Ausdrücke . 42
5.1.6. Kontrollstrukturen . 45
5.1.7. Funktionen . 46
5.1.8. Module und Packages . 51
5.1.9. Objektorientiertes Programmieren 52
5.1.10. Pragmatisches Perl . 54
5.1.11. Plain Old Documentation . 55

5.2. Shellscripting . 57

6. Auszeichnungssprachen 63
6.1. XML . 63

6.1.1. DTD . 64
6.1.2. Namensräume . 66
6.1.3. XML Schema . 67

6.2. XSLT . 70

5

Inhaltsverzeichnis Inhaltsverzeichnis

6.3. SOAP . 73
6.4. WSDL . 74

7. Datenbankabfragesprachen 79
7.1. SQL . 79

8. OTRS 86
8.1. Installation . 86
8.2. Administration . 87
8.3. Module . 88
8.4. Modulprogrammierung . 90
8.5. Templates . 91

9. Entwickelte Module 93
9.1. DTSTicketNumber . 93

9.1.1. Beschreibung . 93
9.1.2. Konfigurationsparameter . 94

9.2. DTSLib . 95
9.2.1. Beschreibung . 95
9.2.2. Konfigurationsparameter . 95

9.3. DTSFreetext . 96
9.3.1. Beschreibung . 96
9.3.2. Konfigurationsparameter . 97

9.4. DTSTheme . 99
9.4.1. Beschreibung . 99
9.4.2. Konfigurationsparameter . 99

9.5. DTSVirtualHost . 102
9.5.1. Beschreibung . 102
9.5.2. Konfigurationsparameter . 102

9.6. DTSMaster . 105
9.6.1. Beschreibung . 105

9.7. DTSAddress . 107
9.7.1. Beschreibung . 107
9.7.2. Konfigurationsparameter . 108

9.8. DTSSoapUser . 111
9.8.1. Beschreibung . 111
9.8.2. Konfigurationsparameter . 115

9.9. DTSNotifyAgentAsterisk . 116
9.9.1. Beschreibung . 116
9.9.2. Konfigurationsparameter . 117

A. Literatur 118

B. CD-ROM 121

6

Abkürzungsverzeichnis Abkürzungsverzeichnis

Abkürzungsverzeichnis

ACL Access Control List
AD Active Directory
AES Advanced Encryption Standard
AMI Asterisk Manager Interface
AT&T American Telephone & Telegraph Corporation
BNF Backus-Naur-Form
BSD Berkeley Software Distribution
CA Certificate Authority
CAPI Common Application Programming Interface
CGI Common Gateway Interface
CPU Central Processing Unit
DAV Distributed Authoring and Versioning
DES Data Encryption Standard
DMZ Demilitarisierte Zone
DSA Digital Signature Algorithm
DTD Document Type Definition
EBNF Erweiterte Backus-Naur-Form
FTP File Transfer Protocol
GB Gigabyte; 1GB = 109Byte
GiB Gibibyte; 1GiB = 230Byte
GPL General Public License
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
ISDN Integrated Services Digital Network
ISP Internet Service Provider
LDAP Lightweight Directory Access Protocol
LIFO Last In, First Out
MiB Mebibyte; 1MiB = 220Byte
MTA Mail Transfer Agent
NFS Network File System
NSA National Security Agency
OTRS Open Ticket Request System
Perl Practical Extraction and Report Language
PHP PHP Hypertext Preprocessor
PI Processing Instruction
POD Plain Old Documentation
RADIUS Remote Authentication Dial-In User Service
RAID Redundant Array of Independent Disks
regex regular expression
RPC Remote Procedure Call
RSA Rivest-Shamir-Adleman
SCSI Small Computer System Interface
SHA Secure Hash Algorithmus
SMTP Simple Mail Transfer Protocol
SNMP Simple Network Management Protocol
SOAP Simple Object Access Protocol
SQL Structured Query Language
SSH Secure Shell

7

Abkürzungsverzeichnis Abkürzungsverzeichnis

SSL Secure Sockets Layer
TCP Transmission Control Protocol
UC Berkeley University of California, Berkeley
URI Uniform Resource Identifier
URL Unified Resource Locator
W3C World Wide Web Consortium
WAL Write Ahead Logging
WS-I Web Services Interoperability Organization
WSDL Web Services Description Language
WWW World Wide Web
XML Extensible Markup Language
XSL Extensible Stylesheet Language
XSL-FO Extensible Stylesheet Language Formatting Objects
XSLT Extensible Stylesheet Language Transformations

8

Abbildungsverzeichnis Abbildungsverzeichnis

Abbildungsverzeichnis

1. Compaq Proliant DL360 . 13
2. HP Proliant DL360 G4 . 13
3. Das Installationsmenü von FreeBSD . 17
4. Die Suche nach einem Programm im Portssystem 19
5. Das Optionsmenü zur Installation des Apache Webservers 20
6. Das Optionsmenü zur Installation des PostgreSQL Datenbankservers . . . 26
7. Passwortänderung für den Administrator des PostgreSQL Datenbankservers 27
8. Das Optionsmenü zur Installation des Postfix Mailservers 30
9. Per pod2html erzeugte HTML-Dokumentation des Quellcodes 57
10. Der Webbrowser Firefox als XSLT-Parser 73
11. Der schematische Aufbau eines PostgreSQL-Datenbankclusters 84
12. Das Optionsmenü zur Installation von OTRS 86
13. Der schematische Aufbau von OTRS . 89
14. Freitextfelder beim Anlegen eines neuen Tickets 96
15. Administration der Freitextfelder . 97
16. Administration der Themes . 100
17. Modifikation eines Templates . 101
18. Administration der Virtualhosts . 104
19. DTSMaster.pl zum Anlegen neuer OTRS-Instanzen 105
20. Ticketansicht mit der Schaltfläche zum Delegieren 107
21. Ticketdelegation . 108
22. Adressbuch für Ticketdelegationen . 109
23. Anlage eines neuen SOAP-Benutzers . 111
24. Import der SOAP-Funktionen in Microsoft Visual Studio 114

9

Tabellenverzeichnis Tabellenverzeichnis

Tabellenverzeichnis

1. Ausgewählte Konfigurationsparameter des Apache Webservers 21
2. Ausgewählte Operatoren in Perl . 42
3. Vordefinierte Zeichenklassen in regulären Ausdrücken 43
4. Ausgewählte Anweisungen in Perl . 45
5. Ausgewählte Funktionen in Perl . 48
6. Bedingte Wertezuweisungen in der Shellprogrammierung 59
7. Ausgewählte Tests des Shelloperators [bzw. des Programmes test 60
8. Ausgewählte Datentypen in PostgreSQL 80

10

1 PROLOG

1. Prolog

Die vorliegende Arbeit beschreibt die technische Integration des Open Ticket Request
System (OTRS) bei der DTS Firmengruppe in Herford. Im Laufe der Arbeit wurden
die Abteilungen Security, Data Center und Internet Service, welche die betrieblichen
Resourcen für diese Arbeit bereitstellte, zum 1. Januar 2008 in die DTS Systeme GmbH
integriert. Der Bedarf nach einem funktional gekoppelten, aber dennoch in eigenständige
Bereiche unterteiltem Ticketsystemen verlor hierdurch an Bedeutung. Vielmehr musste
ein System geschaffen werden, welches auch Kunden bereitgestellt werden kann. Die
ursprüngliche Anforderung, das OTRS an das vorhandene Projektsystem Work@Web
anzubinden, blieb erhalten. Hier musste eine HTTP-GET-Schnittstelle geschaffen wer-
den und für zukünftige Erweiterungen eine SOAP-Schnittstelle implementiert werden.
Letzteres nimmt zusammen mit den notwendigen theoretischen Erläuterungen in Ka-
pitel 6 einen grossen Teil dieser Arbeit ein. Eine besondere Herausforderung bestand
darin, schon während der Einarbeitungs- und Implementierungsphasen in den Dialog
mit Kunden zu treten, die inhaltliche und terminliche Zusagen erwarteten. Als zeitin-
tensive Fehlentscheidung hat sich das Festhalten am ursprünglichen Design erwiesen,
welches ein mandantenfähiges OTRS vorsah. Die Idee war, die Sicht auf die Datenbank
anhand des Hostnamens zu beschränken, über den der Benutzer auf das OTRS zugegrif-
fen hat. Jedoch besitzt jede OTRS-Instanz einen eindeutigen Hostnamen. Dieser wird
an vielen Stellen wie z.B. in Emailtexten verwendet. Im webbasierten Teil von OTRS
ist dies durch eine neue Datenbankschicht lösbar. Automatisierte Wartungsarbeiten z.B.
durch periodisch ausgeführte Skripte greifen jedoch auf den fest konfigurierten Hostna-
men zurück. Diese hätten neu gestaltet werden müssen, was ein Update des Systems
unnötig erschwert. Zudem ist das Berechtigungssystem von OTRS nicht für eine der-
artige mandatenbasierte Lösung ausgelegt. Empirisch ist ausserdem belegt, dass selbst
technisch nicht versierte Kunden ein System selbsttätig administrieren möchten. Dies ist
nur mit getrennten OTRS-Instanzen möglich, wie sie letztendlich realisiert wurden. Die
bis dato entwickelte Mandantenlösung wurde in ein Modul übernommen, mit dem jeder
Administrator seine Instanz unter verschiedenen Hostnamen erreichbar machen kann.

Als weitere Herausforderung stellten sich einige Fehler in den verwendeten Softwa-
repaketen heraus. So hat der Autor der vorliegenden Arbeit drei Fehler in der OTRS
Version 2.2.3 aufgezeigt123 und ein Fehlverhalten der Funktionsbibliothek SOAP::Lite
aufgezeigt4. Da die verwendeten Softwarepakete als Open Source verfügbar sind und
die jeweiligen Projekte über Mailinglisten verfügen, wurden diese Fehler entsprechend
veröffentlicht. Positiv fiel hierbei die Reaktionszeit der Entwickler auf. Eine Antwort
bzw. ein Lösungsvorschlag war i.d.R. innerhalb von einigen Stunden oder wenigen Ta-
gen verfügbar.

Diese Arbeit ist inhaltlich logisch strukturiert. Nach einer kurzen Erläuterung der zur
Verfügung stehenden Hardware wird das verwendete Betriebssystem FreeBSD vorge-
stellt. Darauf aufbauend werden die eingesetzten Programme bzw. Dienste erörtert. Da
ein grosser Teil dieser Arbeit auf der Programmierung eigener Module für das OTRS
beruht, folgt eine Darstellung der Programmiersprache Perl. Ausserdem wird das un-
ter unixartigen Betriebssystemen typische Shellscripting erklärt. Den Abschluss dieser
Grundlagendiskussion bilden zwei Kapitel über die Auszeichnungssprache XML und des-

1http://lists.otrs.org/pipermail/dev/2007-September/001709.html
2http://lists.otrs.org/pipermail/dev/2007-September/001712.html
3http://lists.otrs.org/pipermail/dev/2007-September/001714.html
4http://sourceforge.net/mailarchive/message.php?msg name=C372633E.B9C9B%25fjo-lists%

40ogris.de

11

http://lists.otrs.org/pipermail/dev/2007-September/001709.html
http://lists.otrs.org/pipermail/dev/2007-September/001712.html
http://lists.otrs.org/pipermail/dev/2007-September/001714.html
http://sourceforge.net/mailarchive/message.php?msg_name=C372633E.B9C9B%25fjo-lists%40ogris.de
http://sourceforge.net/mailarchive/message.php?msg_name=C372633E.B9C9B%25fjo-lists%40ogris.de

1 PROLOG

sen Ableitungen sowie die Datenbankabfragesprache SQL. Die Darstellung des OTRS in
Kapitel 8.1 erfolgt mehr aus der Sicht eines Administrators oder Programmierers denn
aus der eines Anwenders. Abschliessend werden die entwickelten Module präsentiert und
deren Programmierung in Auszügen erklärt.

12

2 HARDWARE

2. Hardware

2.1. Entwicklungssystem

Als Entwicklungssystem stand ein älterer Server vom Typ Compaq Proliant DL360 (s.
Abbildung 1) zur Verfügung. Er besitzt 2 Intel Pentium 3 CPUs mit je 866 MHz sowie

Abbildung 1: Compaq Proliant DL360 (Quelle: Hewlett Packard)

1 GB Arbeitsspeicher. Zwei SCSI-Festplatten mit einer Kapazität von je 18,2 GB bilden
mittels eines RAID-Controllers einen Festplattenverbund im Level RAID-1, was den
Ausfall einer Festplatte ohne betriebliche Einbußen oder Datenverlust verkraftet. Der
Server wurde per Firewall geschützt im internen Techniknetz der DTS Service GmbH
platziert. Als Hostname wurde fjo-otrs.dts-online.net vergeben.

2.2. Produktivsystem

Für die produktive Installation für OTRS wurde von der DTS Systeme GmbH ein Server
vom Typ Hewlett Packard Proliant DL360 G4 (s. Abbildung 2) bereitgestellt. Er verfügt

Abbildung 2: HP Proliant DL360 G4 (Quelle: Hewlett Packard)

über 2 Intel Xeon Prozessoren mit je 3,6 GHz Taktfrequenz. Dies sind CPUs mit je 2
logischen Kernen pro physikalischem Prozessor (dual core). Als Hauptspeicher stehen 4
GB zur Verfügung. Zwei 146 GB fassende SCSI-Festplatten sind wie beim Entwicklungs-
system per RAID-1 zu einem logischen Datenträger mit einer Nettokapazität von 146
GB verbunden. Ferner stehen zwei Ethernetschnittstellen mit einer Geschwindigkeit von
1 GBit/s bereit. Der Server wurde in einer demilitarisierten Zone (DMZ) platziert, so
dass zwar Schutz durch eine Firewall gegeben ist, jedoch der Zugriff aus dem Internet
per

• Email (SMTP per Transmission Control Protocol (TCP), Port 25)

• Web (HTTP per TCP, Port 80)

13

2 HARDWARE 2.2 Produktivsystem

• SSL geschütztem Web (HTTPS per TCP, Port 443)

möglich ist.

14

3 BETRIEBSSYSTEM

3. Betriebssystem

3.1. Einführung in FreeBSD

Das eingesetzte Betriebssystem FreeBSD in der Version 6.2 kann als Ur-Ur-Urenkel (vgl.
Éric Lévénez (2007)) des 1969 von Ken Thompson und Dennis Ritchie entwickelten Unix
angesehen werden. Der Name FreeBSD setzt sich aus den Teilen free im Sinne von frei
von lizenzrechtlich geschütztem Code und Berkeley Software Distribution (BSD) zusam-
men. Die damals zur US-amerikanischen American Telephone & Telegraph Corporation
(AT&T) gehörenden Bell Laboratories, unter dessen Obhut Thompson und Ritchie ih-
rerzeit Unix entwickelten, gab zwar den Sourcecode des Betriebssystems unentgeltlich
an Forschungseinrichtungen wie die University of California, Berkeley (UC Berkeley)
weiter, die entscheidende Entwicklungen wie den TCP/IP-Stack oder die Trennung des
Quellcodes in CPU-spezifische und generische Teile vornahmen, diese verbesserten Ver-
sionen von Unix aber nur weitergeben durften, wenn der jeweilige Interessent oder Her-
steller eine Lizenz von AT&T erwarb. Die Rechtsstreitigkeiten zwischen AT&T und der
UC Berkeley ergaben, dass aus dem Quellcode von BSD 3 von ca. 18000 Dateien ent-
fernt werden mussten und dass AT&T in die von BSD übernommenen Codefragmente
”vergessene”Copyright-Hinweise wieder hinzufügen musste. Aus der bereinigten Inte-
rimsversion 4.3BSD Lite ging im Dezember 1993 FreeBSD 1.0 hervor, welches seitdem
vom FreeBSD Project, einer Gruppe von freiwilligen Entwicklern, gepflegt und als Quell-
code frei zur Verfügung gestellt wird. FreeBSD läuft vornehmlich auf der x86-Architektur
vom Intel 386 Prozessor bis zu aktuellen Pentium- und AMD Athlon-CPUs und auf
deren 64bittigen Nachfolgern wie neusten Intel Xeon- und AMD Opteron-CPUs, die
ob ihrer ähnlichen Befehlssätze unter FreeBSD als amd64-Architektur zusammengefasst
sind. Ferner existieren Portierungen auf die UltraSPARC- und ARM-Architektur. Bis
auf den Betriebssystemkern, den Kernel, und systemnahe Programme existieren keine
Unterschiede zwischen den einzelnen Versionen, so dass sich ein FreeBSD 6.2 auf ei-
nem älteren Intel Pentium 3 genauso administrieren lässt wie auf einem AMD Opteron.
FreeBSD zeichnet sich vor allem durch die folgenden Eigenschaften aus:

Stabilität Laufzeiten (uptime) von mehreren hundert Tagen sind selbst bei belasteten
Systemen keine Seltenheit. Oftmals werden Systeme nur aufgrund von Hardwa-
refehlern, nach dem Einspielen sicherheitskritscher Updates oder physikalischer
Relokation neu gestartet oder heruntergefahren.

Kontinuität Ein FreeBSD-System verhält sich über den Laufzeitraum wie vom Admi-
nistrator vorgegeben. Ein dynamisches Verhalten wie z.B. selbständiges Anpassen
von Konfigurationsparametern findet nicht statt.

Transparenz FreeBSD liegt vollständig als Quelltext vor und verfügt über eine umfang-
reiche und gute Dokumentation (u.a. die sog. manpages), die vom Hilfsprogramm
bis zu internen Funktionen des Kernels reicht

Aktualität FreeBSD kann entweder per vorkompilierter Programmpakete oder über das
Portssystem aktuell gehalten werden. Das Portssystem oder kurz die Ports stellen
eine Metadatenbank dar, die Regeln zum Herunterladen, Übersetzen und Instal-
lieren von i.d.R. quelloffenen Programmen beinhalten. Obwohl dies grösstmögliche
Aktualität der jeweiligen Programme bedeutet, können Programme auch als fertige
Pakete eingespielt werden. Beide Arten (Ports und Pakete) können gleichzeitig auf
einem Rechner verwendet werden. Zudem können aus den über das Portssystem
installierten Programmen eigene Pakete erstellt werden, um sie z.B. auf weiteren
lokalen Rechnern einzuspielen.

15

3 BETRIEBSSYSTEM 3.2 Installation

BSD-Lizenz FreeBSD unterliegt dem allgemeinhin als BSD-Lizenz bekannten Copy-
right. Änderungen am Quellcode oder an der Zusammensetzung der Programme
müssen nicht veröffentlicht werden, solange der Copyright-Hinweis5 übernommen
wird. Dies steht im Gegensatz zur General Public License (GPL), der z.B. Linux
und viele andere Opensource-Programme unterliegen. Ausgenommen von der BSD-
Lizenz sind jedoch Programme, die z.B. über das Portssystem eingespielt wurden,
aber einer anderen Lizenz unterliegen.

Flexibilität Eine Minimalinstallation von FreeBSD benötigt ca. 140 MiB (Mebibyte;
1MiB = 220Byte). Festplattenkapazität und 32 MiB Arbeitsspeicher und beinhal-
tet diverse kommandozeilenbasierte Programme wie

• einen C-Compiler samt Linker und Assembler

• die Secure Shell (SSH), eine sichere Methode zur entfernten Anmeldung

• Client- und Serverprogramme für das File Transfer Protocol (FTP)

• Sendmail zum Versenden und Empfangen von Emails über das Simple Mail
Transfer Protocol (SMTP)

• diverse Hilfsprogramme zum Einrichten von Netzwerkschnittstellen, Forma-
tieren von Festplatten, usw.

Wegen der aufgezählten Gründe verwenden Internet Service Provider (ISP) neben Linux
bevorzugt FreeBSD.

3.2. Installation

FreeBSD wird i.d.R. per CD-ROM installiert. Hierfür nötige CD-Abbilder, sprich ISO-
Files, sind auf dem FTP-Server des FreeBSD-Projektes6 oder einem Spiegel7 zum Dow-
nload verfügbar. Alternativ kann die Installation komplett über das Netzwerk erfolgen.
Hierzu ist jedoch hardwareseitige Unterstützung der Netzwerkkarte sowie ein entspre-
chender Installationsserver notwendig. Daher wird meist per CD-ROM gebootet, und
dann entweder von jener CD das System aufgespielt oder aus dem Installationsmenü (s.
Abbildung 3) eine Netzwerkinstallation über FTP, Network File System (NFS), o.ä.
ausgewählt. Die eigentliche Installation ähnelt sehr der von anderen Betriebssystemen.
Unterschiede betreffen lediglich die Art der Partitionierung und die Möglichkeit, vorab
eine Paketauswahl zu treffen, um so z.B. keine grafische Oberfläche und keine Spie-
le zu installieren. FreeBSD verwendet eine herkömmliche Festplattenpartition, die Sli-
ce genannt wird, und richtet erst innerhalb dieses Slices verschiedene Partitionen für
z.B. das Betriebssystem, die Nutzdaten und den Swapbereich ein. Andere Betriebs-
systeme sehen nur den Slice, nicht aber die in ihm enthaltenen Partitionen. Auf der
Entwicklungsmaschine wurde wegen des beschränkten Festplattenplatzes von 18,2 GB
(Gigabyte; 1GB = 109Byte) eine System- und Datenpartition von 15 GiB (Gibibyte;
1GiB = 230Byte) und eine Swappartiton mit 2 GiB eingerichtet. Die Produktivmaschi-
ne verfügt über 146 GB Nettokapazität. Daher wurde eine sogenannte Root-Partition
für das Betriebssystem mit einer Grösse von 16 GiB eingerichtet. Die Swappartition
wurde mit 4 GiB so gross wie der verfügbare Hauptspeicher gewählt. Der verbleibende
Festplattenplatz von 113 GiB wurde einer eigenen Partition für Nutzdaten zugewiesen
und unterhalb des Verzeichnisses /var eingebunden. Um die wiederkehrende Aufgabe

5http://www.freebsd.org/copyright/index.html
6ftp://ftp.freebsd.org/
7http://www.freebsd.org/doc/en US.ISO8859-1/books/handbook/mirrors-ftp.html

16

http://www.freebsd.org/copyright/index.html
ftp://ftp.freebsd.org/
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/mirrors-ftp.html

3 BETRIEBSSYSTEM 3.2 Installation

Abbildung 3: Das Installationsmenü von FreeBSD

der Installation von FreeBSD auf einem neuen Rechner zu vereinfachen, hat der Au-
tor der vorliegenden Diplomarbeit im Januar 2006 ein nicht veröffentlichtes Skript- und
Konfigurationsbundle namens DTS-BSD begonnen, welches nach der Installation neuer
Systeme eine einheitliche Basiskonfiguration schreibt. Dies umfasst vor allem:

• Herabsetzen der Wartezeit des Bootloaders am Prompt zur Betriebssystemauswahl

• Setzen der lokalen Zeitzone auf Europe/Berlin

• Umleiten aller vom System generierten Statusemails an
hostmaster@dts-online.net

• Anpassen der zentralen Konfigurationsdatei /etc/rc.conf, so dass

– ein deutsches Tastaturlayout geladen wird

– der SSH-Server zur sicheren Anmeldung auf diesem Server über das Netzwerk
gestartet wird

– der Systemlogdienst nur lokale Meldungen annimmt und nicht von anderen
Rechnern im Netzwerk

– der Zeitserver gestartet wird, falls dieser installiert wurde

– der Webserver (Apache) gestartet wird, falls dieser installiert wurde

– der Server für das Simple Network Management Protocol (SNMP) zur Über-
wachung des Rechners gestartet wird, falls dieser installiert wurde

– der PortgreSQL-Datenbankserver gestartet wird, falls dieser installiert wurde

– der MySQL-Datenbankserver gestartet wird, falls dieser installiert wurde

– zur vollständigen Konfiguration nur noch Hostname, IP-Adresse und Default-
gateway eingetragen werden müssen

• Eintragen der Standarddomain dts-online.net und der beiden Nameserver in die
Datei /etc/resolv.conf

17

3 BETRIEBSSYSTEM 3.3 Starten von Systemdiensten

• Heraufsetzen von Kernelparametern in der Datei /etc/sysctl.conf zur Steige-
rung des Netzwerk- und Festplattendurchsatzes

• Anpassen der Konfigurationsdatei /etc/ssh/sshd config, um dem Administrator
(root) die entfernte Anmeldung zu ermöglichen

• Eintragen der Zeitserver ntp1.dts-online.net und ntp2.dts-online.net in die
Konfigurationsdatei /usr/local/etc/ntpd.conf des Zeitservers

• Eintragen des Servers cvsup.dts-online.net zur Aktualisierung des Systems in
die Dateien /usr/local/etc/cvsup-ports.conf und
/usr/local/etc/cvsup-src.conf

• Anpassen der Konfigurationsdatei /usr/local/etc/snmp/snmpd.conf des SNMP-
Dienstes

Zudem aktualisiert ein Skript das Portssystem und installiert dann vorab ausgewählte
Programme.

3.3. Starten von Systemdiensten

Dienste wie z.B. der Systemlogserver (syslogd) oder ein Webserver werden beim Sy-
stemstart von Shellskripten (s. Kapitel 5.2) aktiviert. Diese sogenannten RC-Skripte
liegen im Verzeichnis /etc/rc.d, falls es sich um einen Dienst des Basissystems han-
delt, oder in /usr/local/etc/rc.d, falls es sich um einen über das Portssystem (oder
per Programmpaket) installierten Server handelt. Da das Starten, Stoppen, usw. eines
Dienstes oft gleichartige Schritte umfasst, wurden diese als separate Funktionen in der
Datei /etc/rc.subr zusammengefasst, welche jedes RC-Skript einbindet bzw. einbin-
den sollte. Ob und mit welchen Parametern ein Dienst gestartet werden sollte, muss in
der zentralen Konfigurationsdatei /etc/rc.conf hinterlegt werden. So muss dort z.B.
für den Webserver Apache in der Version 2.2 das Flag apache22 enable auf YES ge-
setzt werden. Etwaige Parameter werden in der Variablen apache22 flags übergeben.
Soll der Webserver nicht mit den Rechten des Administrators root gestartet werden, so
muss in apache22 user der gewünschte Benutzername stehen. Das Namensprefix (hier:
apache22) bestimmt jedes RC-Skript selbst, indem es eine Variable name entsprechend
initialisiert.

3.4. Portssystem

Das Portssystem wird i.d.R im Verzeichnis /usr/ports installiert. Es handelt sich dabei
vorwiegend um eine thematisch sortierte Sammlung von sogenannten Makefiles. Diese
Makefiles sind Textdateien, die Vorschriften zum automatischen Herunterladen, Überset-
zen und Installieren von Softwarepakten enthalten. Makefiles werden üblicherweise in der
modularen Programmierung eingesetzt, um beim erneuten Übersetzen eines aus mehre-
ren Objekten bestehenden Programmes nur diejenigen zu kompilieren, deren zugrunde
liegender Quellcode geändert wurde. Formal beschreibt ein Makefile, welche Schritte
notwendig sind, um aus einer Anzahl von Quelldateien eine oder mehrere Zieldateien zu
erhalten. Im Portssystem sind über 17000 Programme verfügbar (Dezember 2007). Eine
Suchfunktion hilft, die gewünschte Anwendung zu finden, z.B. den Webserver Apache
(s. Kapitel 4.1) in der Version 2.2. Hierfür wechselt man zunächst in das Verzeichnis
/usr/ports und setzt den Befehl make search key=<Suchwort> ab:
$ cd / usr / por t s
$ make search key=apache22

18

3 BETRIEBSSYSTEM 3.4 Portssystem

Man erhält eine Ausgabe wie in Abbildung 4. Neben den Angaben, welche genaue Version

Abbildung 4: Die Suche nach einem Programm im Portssystem

der Software verfügbar ist und welche Pakete zum Übersetzen (B-deps) bzw. zum Betrieb
(R-deps) notwendig sind, ist vor allem das lokale Verzeichnis (Path) wichtig, in dem sich
die gewünschte Anwendung befindet (hier: /usr/ports/www/apache22). Man wechselt
in jenes Verzeichnis (cd /usr/port/www/apache22) und setzt den Befehl make install
clean ab, um das Softwarepaket zu installieren und um anschliessend alle während des
Kompilierens erzeugten Dateien zu löschen. Das Portssystem wird alle benötigten Pakete
(B-deps, R-deps) automatisch installieren, sofern sie noch nicht im System vorhanden
sind. Wird ein Port zum allerersten Mal installiert und bietet er verschiedene Optio-
nen zur Installation an wie z.B. Optimierungsflags oder zusätzliche Module, so wird
dem Administrator ein entsprechendes Auswahlmenü präsentiert. Manuell lässt sich ein
derartiges Optionsmenü per make config im Verzeichnis des entsprechenden Paketes
aufrufen.

19

4 ANWENDUNGSPROGRAMME

4. Anwendungsprogramme

4.1. Apache

4.1.1. Einleitung

Der Webserver Apache ist eine von der Apache Software Foundation8 im Quellcode zur
Verfügung gestellte Serversoftware. Üblicherweise wird er verwendet, um Dateien per
Hypertext Transfer Protocol (HTTP) auszugeben, welches allgemeinhin die Grundlage
des World Wide Web (WWW) bildet. Er ist modular aufgebaut. Zum Standardumfang
gehören vor allem Module, die

• die sichere Variante HTTPS des Hypertext Transport Protocols implementieren

• die Generierung von Webseiten per externer Programme ermöglichen (das soge-
nannte Common Gateway Interface (CGI)

• den Betrieb des Servers als Proxy für HTTP und FTP erlauben.

4.1.2. Installation

Der Apache Webserver wurde über das Portssystem installiert (s. Abbildung 5). Hierbei

Abbildung 5: Das Optionsmenü zur Installation des Apache Webservers

wurden neben der Defaultauswahl die folgenden Module installiert:

mod proxy Dieses Modul stellt allgemeine Proxyfunktionen bereit.

mod proxy http Dieses Modul stellt Proxyfunktionen für das Hypertext Transfer Pro-
tocol bereit.

8http://www.apache.org

20

http://www.apache.org

4 ANWENDUNGSPROGRAMME 4.1 Apache

mod ssl Dieses Modul ermöglicht den Einsatz von HTTPS, der sicheren Variante des
Hypertext Transfer Protocols.

Die Module mod dav und mod dav fs, welche das HTTP-basierte Verfahren Distributed
Authoring and Versioning (DAV) zum Bearbeiten von Dateien auf einem Webserver
implementieren, wurden aus Sicherheits- und Performancegründen abgewählt.

4.1.3. Konfiguration

Damit der Apache beim Booten des Systems gestartet wird, muss in der Datei
/etc/rc.conf folgender Eintrag gesetzt sein:

apache22_enable="YES"

FreeBSD verfügt über einen Filter, der neue Verbindungen nur dann an eine Anwendung
signalisiert, wenn der Kernel eine gültige HTTP-Anfrage erkannt hat. Da dies die Anzahl
der Kontextwechsel zwischen Kernel- und Userspace mindert, wurde die /etc/rc.conf
um folgende Option erweitert:

apache22_http_accept_enable="YES"

Standardmässig stellt die Datei /usr/local/etc/apache22/httpd.conf die Konfigura-
tion des Apache dar. Auf der Entwicklungsmaschine (s. Kapitel 2.1) wurde diese bis zum
Einsatz des Moduls DTSMaster (s. Kapitel 9.6) verwendet. Auf der Produktivmaschine
hingegen werden automatisch generierte Webserverkonfigurationen verwendet. Tabelle 1
erläutert die wichtigsten Parameter einer Konfigurationsdatei für den Apache.

Tabelle 1: Ausgewählte Konfigurationsparameter des Apache Webservers

Parameter Beschreibung
ServerRoot VERZEICHNIS legt das Stammverzeichnis des Servers fest;

alle relativen Pfadangaben beziehen sich
hierauf

User NAME weist den Apache an, nach dem Start mit
den Rechten des (unprivilegierten) Benut-
zers NAME zu arbeiten

Group NAME weist den Apache an, nach dem Start mit
den Rechten der (unprivilegierten) Gruppe
NAME zu arbeiten

LoadModule NAME MODUL lädt das Modul mit dem Namen NAME aus
der Bibliothek MODUL

AcceptMutex TYPE Apache kreiert beim Start mehrere Ar-
beitsprozesse, die beim Zustandekommen ei-
ner neuen Clientverbindung serialisiert wer-
den müssen, damit nur ein Arbeitsprozess
den neuen Client bedient; üblich ist der Typ
sysvsem, der einen Semaphore als Mutex
verwendet

Listen ADRESSE gibt die IP-Adresse und optional die Port-
nummer an, auf der der Apache Verbindun-
gen akzeptiert; als Wildcard für alle Adres-
sen des Systems kann ein Stern * verwendet
werden

21

4 ANWENDUNGSPROGRAMME 4.1 Apache

Tabelle 1: Ausgewählte Konfigurationsparameter des Apache Webservers (Forts.)

Parameter Beschreibung
NameVirtualHost ADRESSE das Hypertext Transfer Protocol ermöglicht

es, dass ein Server mehrere, anhand ihrer
Hostnamen unterschiedene Webauftritte be-
herbergt; jener Parameter gibt an, auf wel-
chen Netzwerkschnittstellen der Apache die-
ses Verhalten unterstützt

ServerAdmin EMAIL gibt die Emailadresse des Administrators
an, die z.B. auf Fehlerseiten angegeben wird

PidFile DATEI gibt an, in welcher Datei die Prozessnummer
des Servers gespeichert werden soll, damit
z.B. die RC-Skripte des Betriebssystems den
Apachen stoppen können

ErrorLog DATEI spezifiert die Datei, in der Fehlermeldungen
protokolliert werden

CustomLog DATEI FORMAT gibt an, in welcher Datei und mit wel-
chen Format Zugriffe protokolliert werden;
hierfür muss das Modul log config module
aus der Bibliothek mod log config.so gela-
den worden sein

<VirtualHost ADRESSE > leitet einen Abschnitt für einen anhand
des Hostnamen unterschiedenen Webauftritt
ein; dieser muss mit </VirtualHost> wieder
geschlossen werden

ServerName HOSTNAME gibt den Namen eines VirtualHost an
DocumentRoot VERZEICHNIS gibt das Wurzelverzeichnis für einen Virtual-

Host an; per default werden abgerufene Da-
teien aus diesem Verzeichnis ausgeliefert

RedirectPermanent URL1 URL2 Anfragen von Clients nach Dokumenten un-
ter dem Pfad URL1 werden zum Pfad
URL2 weitergeleitet; hierfür muss das
Modul alias module aus der Bibliothek
mod alias.so geladen worden sein

<LocationMatch REGEX > leitet einen Abschnitt für Anfragen nach Do-
kumenten, auf deren Pfad der reguläre Aus-
druck REGEX zutrifft, ein; innerhalb ei-
nes solchen Abschnittes können gesonder-
te Regeln definiert werden; ein solcher Ab-
schnitt muss per </LocationMatch> wieder
geschlossen werden

22

4 ANWENDUNGSPROGRAMME 4.1 Apache

Tabelle 1: Ausgewählte Konfigurationsparameter des Apache Webservers (Forts.)

Parameter Beschreibung
ProxyPass URL HOSTNAME Anfragen nach Dokumenten unterhalb des

Pfades URL werden an den Rechner mit
dem Namen HOSTNAME durchgeleitet;
hierfür müssen die Module proxy module
aus der Bibliothek mod proxy.so und – falls
der entfernte Rechner per HTTP angespro-
chen werden soll – proxy http module aus
mod proxy http.so geladen worden sein

SSLEngine On gibt an, dass Dokumente per HTTPS
geschützt übertragen werden sollen; hierfür
muss das Modul ssl module aus der Biblio-
thek mod ssl geladen worden sein

SSLCertificateFile DATEI gibt den Pfad zum SSL-Zertifikat an
SSLCertificateKeyFile DATEI gibt den Pfad zum SSL-Schlüssel an

4.1.4. mod perl2

Aktuelle Webserver ermöglichen es, Webseiten und andere Inhalte dynamisch zu gene-
rieren. Hierzu wird ein externes Programm oder Skript aufgerufen, das z.B. Anfragen an
eine Datenbank stellt und diese Daten dem Besucher bzw. Client darstellt. Ein solches
Programm kann in nahezu jeder Programmiersprache erstellt werden. Es muss lediglich
in der Lage sein,

• etwaige übergebene Parameter auf der Standardeingabe lesen zu können

• Hilfswerte wie z.B. die IP-Adresse des Clients als Umgebungsvariable (environ-
ment) einlesen zu können

• den dynamisch erzeugten Inhalt, z.B. eine Webseite, aber auch ein Bild, per Stan-
dardausgabe an den Webserver zurückliefern zu können.

Eine typische Anwendung ist z.B. ein Gästebuch, bei dem der Besucher zunächst in ei-
ne statische Webseite seinen Namen, seine Emailadresse und einen Kommentar eingibt.
Per Mausklick auf einen meist mit Absenden oder Eintragen betitelten Knopf werden
die Werte an eine dynamische Webseite gesendet, hinter der sich ein externes Programm
verbirgt. Dieses nimmt die Daten des Besuchers entgegen und speichert sie i.d.R. zusam-
men mit Datum und der IP-Adresse des Clients in einer Datenbank ab. Dieses Common
Gateway Interface, oder kurz CGI genannte Verfahren ist zwar flexibel, beim Einsatz
einer interpretierten Sprache wie Perl jedoch muss der Webserver bei jedem Aufruf den
Perlinterpreter aufrufen. Dieser parst und kompiliert zunächst das gewünschte Skript
und evtl. zusätzliche Module. Anschliessend kann dieses Skript mit der eigentlichen Auf-
gabe beginnen, z.B. eine Datenbank befragen und die Ausgabe generieren. Diese Schritte
sind zum einen sehr aufwendig und zum anderen redundant, da die Anzahl der Websei-
tenaufrufe auf einem produktiven Server i.d.R. die Häufigkeit von Änderungen an der
Perlinstallation oder an den CGI-Skripten übersteigt. Daher wird der Perlinterpreter in
den Webserver geladen. Das Modul mod perl bzw. dessen Nachfolger mod perl2 sind als
eigene Pakete im Portssystem von FreeBSD verfügbar. Die Installation von mod perl2
ist relativ einfach:

23

4 ANWENDUNGSPROGRAMME 4.1 Apache

$ cd / usr / por t s /www/mod perl2
$ make i n s t a l l c l ean

Die Konfigurationsdatei des Webservers muss um folgende Zeile ergänzt werden:

LoadModule perl_module libexec/apache22/mod_perl.so

Die relative Pfadangabe libexec/apache22/mod perl.so setzt voraus, dass der Para-
meter ServerRoot als /usr/local konfiguriert ist. Damit Perlskripte nicht vom (exter-
nen) Interpreter ausgeführt werden, sondern von mod perl2, verwendet man die Anwei-
sung SetHandler perl-script, z.B. innerhalb eines per <LocationMatch> definierten
Abschnittes:

LoadModule perl_module libexec/apache22/mod_perl.so
<VirtualHost *>

ServerName www.fh-bielefeld.de
DocumentRoot /var/www/www.fh-bielefeld.de
<LocationMatch ^/gaestebuch/>

SetHandler perl-script
</LocationMatch>

</VirtualHost>

Ruft ein Besucher in seinem Browser z.B. die URL
http://www.fh-bielefeld.de/gaestebuch/script.pl auf, so wird der Webserver die
lokale Datei /var/www/www.fh-bielefeld.de/gaestebuch/script.pl per mod perl2
ausführen. Kapselt man ein Skript als Perlmodul, so kann dieses Modul beim Starten
des Webservers von mod perl2 interpretiert und als kompilierter Bytecode im Speicher
gehalten werden. Ein solches Modul muss wie folgt strukturiert sein:

#!/ usr / b in / p e r l

package FHBie l e f e ld : : Gaestebuch ;

sub handler ()
{

ehemal iger Skr i p t code . . .
}

e v t l . l o k a l e Subrout inen . . .

e r f o l g r e i c h e s Einbinden melden
1 ;

Der Name des Package ist frei wählbar, darf aber nicht mit anderen Paketen kollidie-
ren und sollte generell passend zur Anwendung gewählt werden. Das eigentliche Skript
bzw. dessen Code auf der Hauptebene muss in eine Funktion namens handler ko-
piert werden. In der Konfiguration des Webservers muss der Name des Packages als
PerlResponseHandler hinterlegt werden:

<LocationMatch ^/gaestebuch/>
SetHandler perl-script
PerlResponseHandler FHBielefeld::Gaestebuch
PerlOptions +SetupEnv

</LocationMatch>

Somit wird der Apache Anfragen nach jeglichen Dokumenten, deren URL mit
http://www.fh-bielefeld.de/gaestebuch/ beginnt, an die Funktion handler im

24

4 ANWENDUNGSPROGRAMME 4.2 PostgreSQL

Package FHBielefeld::Gaestebuch weitergeben. Ist wie im Beispiel die zusätzliche Op-
tion +SetupEnv gesetzt, so kann im Package auf den Hash %ENV zugegriffen werden, der
z.B. unter dem Schlüssel $ENV{REQUEST URI} den Pfad des ursprünglich gewünschten
Dokumentes beinhaltet. Ruft ein Besucher die Seite
http://www.fh-bielefeld.de/gaestebuch/script.pl auf, ist in $ENV{REQUEST URI}
der String /gaestebuch/script.pl hinterlegt. Mit der Anweisung PerlSetVar können
der Funktion handler zusätzliche Optionen übergeben werden:

<LocationMatch ^/gaestebuch/>
SetHandler perl-script
PerlResponseHandler FHBielefeld::Gaestebuch
PerlOptions +SetupEnv
PerlSetVar Ausgabe hello, world

</LocationMatch>

Die Funktion handler bekommt als einzigen Parameter eine Instanz der Klasse
Apache2::RequestRec übergeben, welche von Apache2::RequestUtil erbt. Die Mem-
berfunktion dir config der Klasse Apache2::RequestUtil wird genutzt, um die per
PerlSetVar definierten Optionen abzufragen:

#!/ usr / b in / p e r l

package FHBie l e f e ld : : Gaestebuch ;

sub handler ()
{

my $Request = sh i f t ;
my $Ausgabe = $Request−>d i r c o n f i g (”Ausgabe”) ;

. . .
}

Der Scalar $Ausgabe enthält nun den String hello, world, wie in der Konfiguration des
Webservers definiert. Damit beim Starten von Apache alle verwendeten Perlmodule ge-
laden werden, verwendet man den Parameter PerlRequire gefolgt von einer Pfadangabe
zu einem Perlskript:

PerlRequire /usr/local/etc/preload.pl

Das Skript preload.pl muss lediglich alle verwendeten Module per use laden. Durch
den Einsatz von mod perl werden sie in kompilierter Form im Speicher gehalten.

4.2. PostgreSQL

4.2.1. Einleitung

Der Datenbankserver PostgreSQL ist eine Weiterentwicklung des POSTGRES Projek-
tes. Dieses wurde im Jahre 1986 an der UC Berkeley initiiert und stellte ein Modell
zur objekt-relationalen Datenhaltung dar. Es verfügte über eine eigene Abfragesprache
namens PostQUEL, deren Semantik an die heute übliche Structured Query Language
(SQL) erinnert. PostgreSQL verwendet jedoch ausschliesslich SQL als Abfragesprache
(s. Kapitel 7.1). PostgreSQL hält Daten in Datenbanken vor, die wiederum sogenannte
Relationen beinhalten. Die Menge aller Datenbanken wird im PostgreSQL-Umfeld Da-
tenbankcluster genannt. Ein Datenbankserver verfügt i.d.R. über genau einen solchen
Cluster und stellt für jede Anwendung eine eigene Datenbank bereit. Analog werden Re-
lationen so modelliert, dass sie möglichst ein Abbild real existierender Datensammlungen

25

4 ANWENDUNGSPROGRAMME 4.2 PostgreSQL

entsprechen. Bildlich hat sich für eine Relation der Begriff Tabelle durchgesetzt. So kann
z.B. die Relation Person je nach Anwendungszweck die Attribute Vorname und Nachname
umfassen. Die Datenhaltung erfolgt dann in einer Tabelle mit dem Namen Person oder
auch Personen. Die Spalten dieser Tabelle haben dann die Bezeichnung Vorname und
Nachname. Jeder Reihe dieser Tabelle stellt dann eine Person dar. Die Spalten müssen
zudem von einem bestimmten Datentyp sein, hier z.B. bieten sich zwei Zeichenketten
an. PostgreSQL ermöglicht es, dass Tabellen im Sinne der objektorientieren Program-
mierung voneinander erben. Die Tabelle Mitarbeiter könnte z.B. von Person erben, so
dass Mitarbeiter Vor- und Nachnamen haben (Attributvererbung) und dass jeder Mit-
arbeiter automatisch eine Person ist (Typvererbung). Die physikalische Speicherung der
Daten erfolgt in binären Dateien. PostgreSQL schreibt veränderte Daten jedoch nicht
unmittelbar in den eigentlichen Datenbereich, sondern zunächst in ein sequentielles Log-
file. Dieses Write Ahead Logging (WAL) genannte Verfahren bietet zwei Vorteile. Zum
einen ist sequentielles Schreiben in eine Datei schneller als wahlfreier Zugriff innerhalb
einer Datei. Zum anderen kann somit relativ einfach ein Spiegel der Datenbank betrie-
ben werden. Der Zugriff auf die Daten erfolgt i.d.R über ein Netzwerk mittels binärem
Protokoll. Clientbibliotheken sind für Sprachen wie Perl, PHP, C, u.v.m. verfügbar.

4.2.2. Installation

Die Installation von PostgreSQL gestaltet sich unter FreeBSD aufgrund des Portssystems
sehr einfach:
$ cd / usr / por t s / databases / pos tg re sq l 82−s e r v e r
$ make con f i g i n s t a l l c l ean

Abbildung 6: Das Optionsmenü zur Installation des PostgreSQL Datenbankservers

Im Optionsdialog (s. Abbildung 6) wurden lediglich die Parameter OPTIMIZED CFLAGS
und INTDATE ausgewählt. Ersterer übersetzt den Server mit dem Compilerflag -O3, wel-
ches zugunsten der Ausführungsgeschwindigkeit grösseren Code erzeugt. Der Parameter

26

4 ANWENDUNGSPROGRAMME 4.2 PostgreSQL

INTDATE bewirkt, dass der PostgreSQL-Server für Datum- und Zeitwerte 8 Byte grosse
Integerwerte statt Fließkommazahlen verwendet. Dies schränkt zwar den absoluten Be-
reich darstellbarer Daten von einem Zeitraum zwischen 4713 v.Chr. und 5874897 n.Chr.
auf einen Zeitraum zwischen 4713 v.Chr. und 294276 n.Chr. ein, garantiert jedoch ei-
ne Auflösung von einer Mikrosekunde über den gesamten Zeitraum. Ausserdem wird in
Diverse (2006c)9 darauf hingewiesen, dass im Fließkommacode noch immer Fehler ge-
funden werden. Vor dem ersten Start des PostgreSQL-Servers wurden in der zentralen
Konfigurationsdatei /etc/rc.conf folgende Variablen gesetzt:

postgresql_enable="YES"
postgresql_data="/var/db/pgsql/data"

Der Parameter postgresql data gibt das Verzeichnis an, in dem die Dateien der Da-
tenbank gespeichert werden. Auf dem Produktionsserver ist diese Angabe wichtig, da
der unter /var eingebundenen Partition der meiste Speicherplatz zugewiesen wurde.
Per Aufruf von /usr/local/etc/rc.d/postgresql start wird der Datenserver ma-
nuell gestartet. Existiert das Datenverzeichnis /var/db/pgsql/data noch nicht, so legt
es das Startskript automatisch an und initialisiert den Datenbankserver per Aufruf des
Programmes initdb.

4.2.3. Konfiguration

Per default ist für den Administrationsbenutzer pgsql des PostgreSQL-Servers kein
Passwort vergeben. Dieses kann mit dem Kommandozeilenprogramm psql vergeben
werden. Hierzu verbindet man sich lokal auf die durch die Installation angelegte Testda-
tenbank postgres und vergibt mit dem SQL-Befehl ALTER USER ein Passwort für den
Benutzer pgsql. Die einzelnen Schritte zeigt Abbildung 7. Die Textdatei

Abbildung 7: Passwortänderung für den Administrator des PostgreSQL Datenbankser-
vers

/var/db/pgsql/data/pg hba.conf stellt einen Filter dar, der Benutzern Verbindungen
auf die Datenbank gestattet oder verwehrt. Die Datei besteht aus 5 per Whitespace
getrennten Spalten. Jede Zeile beschreibt eine Zugriffserlaubnis:

host db1 user1 10.0.0.0/8 md5

9http://www.postgresql.org/docs/8.2/static/install-procedure.html

27

http://www.postgresql.org/docs/8.2/static/install-procedure.html

4 ANWENDUNGSPROGRAMME 4.2 PostgreSQL

Diese Zeile gibt dem Benutzer user1 Zugriff auf die Datenbank db1, wenn die Verbindung
vom einem Rechner aus dem IP-Netz 10.0.0.0/8 kommt und eine Passwortauthentifizie-
rung per MD5-Hash stattfindet. Statt expliziter Datenbank- und/oder Benutzernamen
kann der Wildcard all verwendet werden:

host all all 10.0.0.0/8 md5

Somit wird allen Benutzern Zugriff auf jede Datenbank gestattet, wenn sie aus dem
Netz 10.0.0.0/8 kommen und sich per MD5-Hash authentifizieren. Obwohl eine Anmel-
dung per MD5-Schlüssel sehr sicher ist, existieren ferner die Authentifizierungsmethoden
trust, welche kein Passwort verlangt, und password, welche ein Klartextpassword er-
wartet. Verwendet man local statt des Schlüsselwortes host, so definiert man Zugriffs-
rechte für Benutzer, die sich lokal über einen Unix-Socket auf die Datenbank verbinden
möchten. Die Angabe eines IP-Netzes oder einer IP-Adresse ist hierbei auszulassen:

local all all md5

Diese Zeile gestattet allen Benutzern, die sich erfolgreich per MD5-Hash authentifi-
ziert haben, Zugriff auf jede Datenbank, sofern die Verbindung lokal erfolgt. Die Da-
tei pg hba.conf definiert lediglich Verbindungsrechte. Jeder Datenbank ist eine Liste
zugeordnet, die einzelnen Benutzern entsprechende Rechte zum eigentlichen Auslesen
und Bearbeiten der Daten gestattet. Diese Liste wird mit dem SQL-Kommando GRANT
modifiziert (s. Kapitel 7.1). Soll dem Benutzer otrs1 nur Zugriff auf die Datenbank
otrs1, dem Benutzer otrs2 nur Zugriff auf otrs2, usw. gegeben werden, kann für den
Datenbanknamen der Bezeichner sameuser verwendet werden:

local sameuser all md5

Der Administrator pgsql soll natürlich weiterhin auf alle Datenbanken zugreifen dürfen:

local all pgsql md5
local sameuser all md5

Da Datenbanknamen und Benutzernamen der einzelnen OTRS-Instanzen i.d.R. gleich-
lautend sind, wurde auf dem Entwicklungs- und dem Produktionsserver die oben gezeigte
Konfiguration in die Datei pg hba.conf übernommen. Die Textdatei
/var/db/pgsql/data/postgresql.conf stellt die Hauptkonfiguration des PostgreSQL-
Servers dar. Sie wurde um die folgenden Parameter erweitert bzw. entsprechend ange-
passt:

log destination = ’syslog’ leitet alle Logausgaben der Datenbank an den System-
logdienst weiter

autovacuum = on startet einen internen Hilfsprozess, der die Datenbank bereinigt und
nicht belegten Speicherplatz freigibt; hierfür müssen ferner die Optionen
stats block level = on und stats row level = on aktiviert sein.

Damit die Meldungen des PostgreSQL-Servers vom Systemlogdienst in die separate Datei
/var/log/pgsql.log geschrieben werden, wurde die Konfigurationsdatei
/etc/syslog.conf um folgende Zeile erweitert:

local0.* /var/log/pgsql.log

28

4 ANWENDUNGSPROGRAMME 4.3 Postfix

4.3. Postfix

4.3.1. Einleitung

Auf einem FreeBSD-System ist per default sendmail installiert. Dies ist ein sogenannter
Mail Transfer Agent (MTA), der für die Annahme, das Routing und die Weiterleitung
von Emails zuständig ist. Weil sendmail eine auffällige (Un-)Sicherheitshistorie10 vorzu-
weisen hat, verarbeitet es unter FreeBSD standardmässig nur Emails, die von lokalen
Benutzern des Systems versendet werden. Es akzeptiert keine per Netzwerk eingelieferten
Emails. Obschon ein- als auch ausgehende Emails über separate, von der DTS Service
betreute und daher aus Sicht interner Systeme vertrauenswürdige Mailserver geleitet
werden können, wurde sendmail deaktiviert und durch Postfix ersetzt. Postfix wurde
von Wietse Venema als sichere Alternative zu sendmail entwickelt. Während sendmail
ein monolithisches Programm ist, besteht Postfix aus mehreren Teilen, die mit unter-
schiedlichen Benutzerrechten laufen und über definierte Schnittstellen miteinander kom-
munizieren. Dennoch wird Postfix zentral mittels einiger Textdateien konfiguriert. Im
Gegensatz zu sendmail sind diese Konfigurationsdateien verständlicher und gut struktu-
riert. Da pro Maschine mehrere OTRS-Instanzen mit unterschiedlichen Benutzerrechten
laufen, muss das jeweilige Perlskript, welches Emails in die Datenbank übernimmt, eben-
falls mit den Rechten des entsprechenden Benutzers ausgeführt werden. In Postfix wird
dies mit 3 trivialen Textzeilen erreicht. Mit sendmail würde dies entweder die manuelle
Bearbeitung der sendmail.cf, der zentralen und komplexen Konfigurationsdatei, oder
die Erweiterung des Präprozessors bedeuten, welcher die sendmail.cf erzeugt.

4.3.2. Installation

Die Metadaten zum Installieren von Postfix über das Portssystem liegen im Verzeich-
nis /usr/ports/mail/postfix. Nach dem Wechsel dorthin ruft man den Befehl make
config install clean auf, um den Optionsdialog aufzurufen, Postfix zu installieren,
und um temporäre Dateien nach der Kompilierung zu löschen. Im Optionsdialog (s. Ab-
bildung 8) sind alle Parameter abzuwählen. Postfix kann verschiedene SQL-Datenbanken,
Lightweight Directory Access Protocol (LDAP)-Verzeichnisse
und In-Memory-Datenbanken abfragen, um so Routinggentscheidungen für Emails zu
treffen. Diese Möglichkeiten werden nicht benötigt. Als Datenquelle werden auf dem
OTRS-Server automatisch erzeugte Hashdateien verwendet, die von einem Perlskript
angelegt werden. Die Unterstützung für derartige Hashdateien gehört zum Standardum-
fang von Postfix.

4.3.3. Konfiguration

Noch während der Installation wird der Administrator gefragt, ob Postfix als Standard-
mailserver des Systems in die Datei /etc/mail/mailer.conf eingetragen werden soll.
Dies ist zu bejahen. Nach der Installation wird sendmail per Aufruf von
/etc/rc.d/sendmail stop beendet. Anschliessend muss die zentrale Konfigurationsda-
tei /etc/rc.conf des FreeBSD-Systems angepasst werden:

sendmail_enable="NONE"
postfix_enable="YES"

Somit wird beim Systemstart nicht mehr sendmail, sondern Postfix aktiviert. Manu-
ell kann man Postfix per Aufruf von /usr/local/etc/rc.d/postfix starten, stoppen

10s.a. http://cr.yp.to/maildisasters/sendmail.html

29

http://cr.yp.to/maildisasters/sendmail.html

4 ANWENDUNGSPROGRAMME 4.3 Postfix

Abbildung 8: Das Optionsmenü zur Installation des Postfix Mailservers

oder zum erneuten Einlesen seiner Konfiguration veranlassen, wenn man den Parameter
start, stop respektive reload verwendet. Die Konfigurationsdateien liegen im Ver-
zeichnis /usr/local/etc/postfix. Die Datei master.cf definiert alle innerhalb des
Mailservers verfügbaren Dienste. Jede Zeile besteht aus 8, per Whitespace getrennten
Spalten und stellt einen Service dar, z.B.:

smtp inet n - n - - smtpd

Die einzelnen Felder haben folgende Bedeutung:

1. Name (smtp) Das erste Feld definiert den frei wählbaren Namen des Services. Der
Name zusammen mit dem Typ (s.u.) müssen eindeutig sein.

2. Typ (inet) Das zweite Feld definiert den Typ des Services. Der Wert inet gibt an,
dass dieser Dienst bzw. das Programm (s. Punkt 8.) so gestartet werden soll, dass
er über das Netzwerk konnektierbar ist. Der Wert unix gibt an, dass dieser Dienst
so gestartet werden soll, dass er nur per lokalem Unix-Socket angesprochen werden
kann.

3. Privatflag (n) Das dritte Feld akzeptiert nur die boolschen Werte n für no, y für yes
oder - für den Defaultwert. Es gibt an, ob der Zugriff auf diesen Dienst nur durch
Postfix selbst gestattet sein soll. Für Dienste vom Typ inet muss hier n angegeben
werden. Der Standardwert (-) ist gleichbedeutend mit y.

4. Privilegflag (-) Das vierte Feld ist ebenfalls ein boolsches Feld. Der Defaultwert ist
y und gibt an, dass der Dienst nicht mit den Rechten des Administrators root
arbeiten darf.

30

4 ANWENDUNGSPROGRAMME 4.3 Postfix

5. Chroot-Flag (n) Das fünfte Feld bestimmt, ob der Dienst in einer vom restlichen
System abgeschotteten Umgebung, einer sogenannten Chroot-Umgebung, laufen
soll. Der Standardwert ist y.

6. Interval (-) Das sechste Feld gibt die Zeit in Sekunden an, nach der ein Dienst erneut
gestartet wird. Der Standardwert von 0 kann wie bei boolschen Feldern (s.o.) per -
referenziert werden. Ein Zeitwert von null Sekunden deaktiviert das erneute Starten
eines Services. Das Feld wird i.d.R. nur für einige interne Postfixprozesse gesetzt,
z.B. für den Dienst, der die Mailqueue verwaltet.

7. Prozesslimit (-) Das siebte Feld gibt an, wie viele Instanzen von diesem Service
gleichzeitig laufen dürfen. Auch hier stellt der Bindestrich - den Defaultwert dar,
der gleich dem Wert der Variablen default process limit in der Datei main.cf
(s.u.) ist. Standardmässig ist default process limit auf 100 gesetzt. Ein Pro-
zesslimit von 0 erlaubt beliebig viele gleichzeitige Instanzen eines Dienstes.

8. Programm und optionale Argumente (smtpd) Im letzten Feld wird der Name des
Programmes erwartet, welches bei Verbindungen auf diesen Service ausgeführt
wird. Wird wie im Beispiel kein absoluter Pfad angegeben, so geht Postfix davon
aus, dass das Programm in dem Verzeichnis liegt, welches durch den Parameter
daemon directory in der Datei main.cf spezifiziert ist. Optionale Kommando-
zeilenargumente werden meist per Whitespace eingerückt in der nächsten Zeile
angegeben.

Das Skript PostMaster.pl einer OTRS-Instanz liest eine Email von der Standardein-
gabe und schreibt sie in die Datenbank. Das Programm pipe des Postfixservers kann
Emails auf die Standardeingabe von beliebigen externen Programmen weiterleiten. Der
notwendige Eintrag in der master.cf sieht wie folgt aus:

otrs2 unix - n n - - pipe
user=otrs2 argv=/var/otrs/otrs2/bin/PostMaster.pl

Der Postfixservice otrs2 wird über einen lokalen Unix-Socket angesprochen. Er darf
nur vom Postfixserver angesprochen werden, läuft mit Administratorrechten, wird nicht
in einer Chroot-Umgebung gekapselt, unterliegt keinem Reaktivierungsinterval, und darf
höchstens 100 Mal gleichzeitig gestartet werden. Das Programm pipe wird mit den Rech-
ten des Benutzers otrs2 das externe Programm /var/otrs/otrs2/bin/PostMaster.pl
starten, sobald durch das Routing eine Mail an den Service otrs2 weitergeleitet wird.
Die Datei main.cf stellt die Hauptkonfiguration eines Postfixservers dar, in der neben
über 500 Betriebsparametern auch Datenbanken oder Tabellen konfiguriert werden, die
das Mailrouting bestimmen. Postfix teilt Empfängeremailadressen bzw. deren Domains
in Klassen ein. Eine Klasse bestimmt die weitere Verarbeitung einer Email. Gehört eine
Domain z.B. zur Relayklasse, so werden Emails angenommen und weitergeleitet, wenn
die Empfängeradresse zu jener Domain gehört. Der Parameter relay domains gibt eine
externe Tabelle an, in der alle Domains aufgeführt werden, die zur Relayklasse gehören:

relay_domains = hash:/usr/local/etc/postfix/relay_domains

Die Datei /usr/local/etc/postfix/relay domains ist eine Textdatei, die in jeder Zeile
den Namen einer Domain aufführt, die zur Relayklasse gehört, z.B.:

fh-bielefeld.de
dts.de

31

4 ANWENDUNGSPROGRAMME 4.4 OpenSSL

Das Prefix hash: gibt an, dass nicht diese Textdatei direkt, sondern ein daraus er-
zeugtes Datenbankfile mit dem Namen relay domains.db verwendet werden soll. Dies
ist besonders bei sehr vielen Einträgen sinnvoll, da indizierte Textdateien effizienter zu
durchsuchen sind. Das Programm postmap erzeugt ein solches Datenbankfile, welches
automatisch das Suffix db erhält:

$ postmap / usr / l o c a l / e t c / p o s t f i x / re lay domains

Ohne zusätzliche Transporteinträge werden zwar Mails für die Domains der Relayklasse
angenommen, aber nicht an die OTRS-Instanzen weitergeleitet. Im schlimmsten Fal-
le würde man sogar eine Mailschleife konstruieren. Daher schränkt man zunächst die
möglichen Empfängeradressen aller Domains in der Relayklasse ein:

relay_recipient_maps = hash:/usr/local/etc/postfix/relay_recipient_maps

Der Parameter relay recipient maps in der main.cf gibt an, welche Emailadressen
aus der Relayklasse angenommen werden können. Die Textdatei relay recipient maps
enthält pro Zeile eine Empfängeradresse, z.B.:

webmaster@fh-bielefeld.de
student1@fh-bielefeld.de
info@dts.de
abuse@dts.de

Auch diese Datei muss per postmap indiziert werden:

$ postmap / usr / l o c a l / e t c / p o s t f i x / r e l a y r e c i p i e n t map s

Mit einer weiteren Tabelle, die Transportziele enthält, werden nun diese Empfänger-
adressen an verschiedene Ziele wie z.B. OTRS-Instanzen weitergeleitet. Die Datei
/usr/local/etc/postfix/transport maps hat folgenden Inhalt:

webmaster@fh-bielefeld.de otrs1:[127.0.0.1]
student1@fh-bielefeld.de otrs2:[127.0.0.1]
info@dts.de otrs2:[127.0.0.1]
abuse@dts.de otrs1:[127.0.0.1]

Die Emailadressen webmaster@fh-bielefeld.de und abuse@dts.de werden an den Ser-
vice otrs1, Mails an student1@fh-bielefeld.de oder info@dts.de an den Service
otrs2 weitergeleitet. Sind beide Dienste wie oben gezeigt in der Datei master.cf einge-
tragen, werden Mails über das Skript PostMaster.pl in die jeweilige OTRS-Datenbank
eingetragen. Die IP-Adresse 127.0.0.1 ist hier ein Platzhalter, der das erwartete Format
der transport maps kompletiert.

4.4. OpenSSL

OpenSSL ist ein Softwarepaket zum Umgang mit kryptographischen Schlüsseln und Zer-
tifikaten. Es ist frei als Opensource-Software11 erhältlich und gehört zum Standardum-
fang eines FreeBSD-Systems. OpenSSL besteht im wesentlichen aus einer C-Biblibothek
für Secure Sockets Layer (SSL) und dem darauf basierenden Kommandozeilentool
openssl. Die Bibliothek wird meist in Programmen verwendet, die über einen unsicheren
Kommunikationskanal wie dem Internet Nachrichten austauschen müssen. So greift der
Apache Webserver (s. Kapitel 4.1) mit dem Modul mod ssl auf die OpenSSL-Library zu.

11http://www.openssl.org

32

http://www.openssl.org

4 ANWENDUNGSPROGRAMME 4.4 OpenSSL

Das Kommandozeilenprogramm wird eingesetzt, um die für eine sichere Kommunikation
notwendigen Schlüssel und Zertifikate zu erstellen. Sicherheit bedeutet:

Vertraulichkeit Die übertragenen Daten können nur von den an der Kommunikation teil-
nehmenden und dazu authorisierten Parteien eingesehen werden, z.B. dem Browser
des Anwenders und dem HTTPS-Webserver.

Integrität Die Daten werden auf ihrem Weg zwischen den Parteien nicht verändert.
Insbesondere muss Datenmanipulation erkannt und als ungültige Kommunikation
von allen Teilnehmern verworfen werden.

Authentizität Die Kommunikationspartner müssen untereinander vertrauen. So sind
Daten, die vertraulich und integer übermittelt wurden, wertlos, wenn der Kom-
munikationspartner nicht derjenige ist, der er vorgibt zu sein.

Vertraulichkeit wird i.d.R. mittels Blockchiffren wie dem Advanced Encryption Stan-
dard (AES) oder dem älteren Data Encryption Standard (DES) erreicht. Neben einer
sicheren, sprich starken Verschlüsselung soll ein Chiffrierungsalgorithmus einen hohen
Datendurchsatz bieten. Integrität lässt sich mit Prüfsummen oder Hash-Funktionen er-
reichen. Hash-Funktionen bilden beliebig grosse Urmengen auf eine beschränkte Bild-
menge ab. So erzeugt die Hash-Funktion Secure Hash Algorithmus (SHA) unabhängig
von den eingegebenen Daten immer eine 20 Byte grosse Ausgabe, den Hash-Wert die-
ser Daten. Man fordert von einer Hash-Funktion Bijektivität und Nicht-Existenz einer
Umkehrfunktion. Obgleich es wegen der beschränkten Bildmenge theoretisch unmöglich
ist, sollen keine Eingabedaten existieren, die den gleichen Hash-Wert liefern. Liefern
zwei unterschiedliche Eingabedaten den gleichen Hash-Wert, so liegt eine Kollision vor.
Auf keinen Fall darf es möglich sein, aus einem Hash-Wert das ursprüngliche Datum zu
ermitteln. Ferner sollen alle möglichen Hash-Werte tatsächlich erreicht werden können.
Eine Vertrauensstellung zwischen den Kommunikationsteilnehmern erreicht man mit-
tels asymetrischer Verschlüsselung bei Verwendung einer Zertifizierungsinstanz. Hierzu
erzeugen die Kommunikationsteilnehmer, deren Authentizität bestätigt werden soll, ein
sogenanntes Schlüsselpaar, bestehend aus einem privaten (private key) und einem öffent-
lichen Schlüssel (public key). Beide Schlüssel müssen folgenden Anforderungen genügen:

• Der private Schlüssel darf nicht aus dem öffentlichen Schlüssel berechnet werden
können

• Mit dem privaten Schlüssel können Daten digital signiert werden. Diese Signatur
und somit die Integrität der Daten kann mit dem öffentlichen Schlüssel verifiziert
werden

• Mit dem öffentlichen Schlüssel können Daten vertraulich verschlüsselt werden. Die
verschlüsselten Daten dürfen nur mit Hilfe des privaten Schlüssels wieder in die
ursprünglichen Klartextdaten überführt werden.

• Es muss überprüft werden können, ob privater und öffentlicher Schlüssel zusammen
gehören. Praktisch bedeutet dies, dass der öffentliche Schlüssel aus dem privaten
erzeugt werden kann.

Der öffentliche Schlüssel sollte publiziert werden oder zumindest auf Anfrage abrufbar
sein. Der private Schlüssel darf jedoch auf keinen Fall veröffentlich werden. Die Ver-
trauensstellung wird erst mit Hilfe einer dritten, an der eigentlichen Datenübertragung
unbeteiligten Partei erreicht, der sogenannten Certificate Authority (CA). Diese signiert

33

4 ANWENDUNGSPROGRAMME 4.4 OpenSSL

mit ihrem privaten Schlüssel die öffentlichen Schlüssel aller Kommunikationsteilnehmer
und deren Metadaten wie Name, Emailadresse, Wohnort, etc. Mit diesen Zertifikaten
kann sich nun jeder Kommunikationspartner gegenüber anderen ausweisen. Jeder Teil-
nehmer kann mit Hilfe des öffentlichen Schlüssels der CA ermitteln, ob das Zertifikat
seines Gegenübers tatsächlich von der CA ausgestellt wurde. Vertrauen alle Teilnehmer
der CA, so vertrauen sie automatisch ihrem jeweiligen Kommunikationspartner. Wie
und ob ein Teilnehmer der CA vertraut, kann allerdings nicht technisch gelöst werden12.
In der Praxis wird die gesamte Situation vereinfacht. Zum einen kommunizieren nur
zwei Teilnehmer miteinander, entweder ein Client und ein Server (z.B. per HTTPS)
oder zwei natürliche Personen per sicherer Email. Zum anderen wird auf eine Authenti-
zitätsüberprüfung des Clients meist verzichtet (nicht jedoch in Sicherheitsarchitekturen
wie Kerberos oder dem davon abgeleiteten Active Directory (AD)). Um ein Zertifikat zu
erhalten, sind vier Schritte notwendig:

1. Ein Schlüsselpaar muss vom Antragsteller des Zertifikates generiert werden

2. Der öffentliche Schlüssel wird in einem Zertifikatsrequest zusammen mit Angaben
über den Antragsteller wie Name, Emailadresse, etc. an eine CA gesendet

3. Mit ihrem privaten Schlüssel signiert die CA nach Überprüfung die im Antrag
enthaltenen Daten und sendet das erzeugte Zertifikat an den Antragsteller zurück

4. Zertifikat und privater Schlüssel müssen in die Anwendung, z.B. einen Webserver,
eingebunden werden.

Schritt 3 ist i.d.R. mit finanziellem Aufwand für den Antragsteller verbunden und wird
daher hier nicht angewendet. Stattdessen wird der Zertifikatsrequest mit dem privaten
Schlüssel des Antragstellers unterschrieben. Man spricht dann von einem selbst-signierten
Zertifikat. Setzt man dieses und den privaten Schlüssel in einem Webserver ein, so wer-
den nur Vertraulichkeit und Integrität der Daten erzielt. Für den Einsatz in den Webser-
vern der OTRS-Instanzen bietet dies hinreichende Sicherheit. Natürlich kann ein selbst-
signiertes gegen ein von einer anerkannten CA unterschriebenes Zertifikat ausgetauscht
werden. Für die Schritte 1 bis 3 kann OpenSSL verwendet werden. Mit folgendem Be-
fehl wird ein privater Schlüssel nach dem Rivest-Shamir-Adleman (RSA)-Algorithmus
erzeugt:

$ opens s l genrsa −out p r i va t e key . txt

OpenSSL unterstützt neben RSA auch den Digital Signature Algorithm (DSA). Dieser
erfordert eine Parameterdatei, die jedoch an dieser Stelle nicht weiter erläutert wird. Der
öffentliche Schlüssel kann mit der Option -pubout ausgegeben werden:

$ opens s l r sa −in pr i va t e key . txt −pubout

Einen Zertifikatsrequest erzeugt man mit dem folgenden Befehl:

$ opens s l req −new −c on f i g r e q c on f i g . txt −key pr i va t e key . txt \
−out c e r t r e q . txt

Die Datei cert req.txt enthält den öffentlichen Schlüssel sowie die Angaben über den
Antragsteller aus der Datei req config.txt und kann daher zur Zertifikatserstellung an
eine CA gesendet werden. Verwendet man zusätzlich den Parameter -x509, so erzeugt
OpenSSL ein selbst-signiertes Zertifikat:

12Vgl. die Situation im alltäglichen Leben, in der die Echtheit einer Person festgestellt werden muss,
was i.a. durch Vertrauen in hoheitlich ausgestellte Dokumente wie Personalausweis, Geburtsurkunde,
etc. gelöst wird.

34

4 ANWENDUNGSPROGRAMME 4.4 OpenSSL

$ opens s l req −new −x509 −c on f i g r e q c on f i g . txt −key pr i va t e key . txt \
−out s e l f s i g n e d c e r t . txt

Der private Schlüssel private key.txt und das selbst-signierte Zertifikat
self signed cert.txt sind geeignet, um z.B. per mod ssl in einen Apache Webser-
ver eingebunden zu werden. Die Datei req config.txt besteht aus mindestens zwei
Abschnitten:

[req]
distinguished_name = request_options
prompt = no

[request_options]
C = DE
ST = NRW
L = Herford
O = DTS
OU = ISP
CN = www.dts.de
emailAddress = info@dts.de

Der Abschnitt [req] wird beim Erzeugen eines neuen Zertifikatsrequestes oder ei-
nes selbst-signierten Zertifikates ausgewertet. Der Parameter prompt gibt an, ob die
Angaben über den Antragsteller manuell beim Aufruf von openssl eingegeben wer-
den sollen oder ob die Werte aus dieser Konfiguration verwendet werden sollen. Wird
prompt auf no gesetzt, werden jegliche interaktiven Rückfragen unterdrückt. Der Para-
meter distinguished name definiert den Abschnitt, der die Angaben zum Antragsteller
enthält, hier request options. In diesem Abschnitt werden folgende Daten erwartet:

Country (C) definiert das Heimatland des Antragstellers bzw. das Land, in dem der
Webserver steht

State (ST) definiert das Bundesland

Locality (L) definiert die Heimatstadt des Antragstellers bzw. die Stadt, in der der
Webserver steht

Organization (O) definiert die Firma bzw. Einrichtung, für die der Antragsteller arbei-
tet oder die den Webserver besitzt

Organizational Unit (OU) definiert die Abteilung, in der der Antragsteller arbeitet
bzw. die den Webserver betreut

Common Name (CN) definiert den allgemeinhin bekannten Namen des Webservers

emailAddress definiert die Emailadresse des Antragstellers bzw. des für den Webserver
zuständigen Administrators

Pro Datei können mehrere solcher Abschnitte angelegt werden; sie müssen sich lediglich
im Namen unterscheiden (z.B. request options1, request options2, usw.). Somit ist
es möglich, mit einer Konfigurationsdatei unterschiedliche Zertifikatsanträge zu erzeu-
gen.

35

5 PROGRAMMIERSPRACHEN

5. Programmiersprachen

5.1. Perl

5.1.1. Aufruf

Die Practical Extraction and Report Language (Perl) wurde 1987 vom damals bei der
National Security Agency (NSA) angestellten Linguisten Larry Wall entwickelt, um ein
einfaches, aber dennoch mächtiges Werkzeug zur Textverarbeitung zu erhalten. Perl ist
eine Interpretersprache, d.h. in Perl geschriebene Programme, sogenannte Skripte, lie-
gen als Klartext vor und werden erst zur Laufzeit in einen Bytecode übersetzt. Der
Perl-Interpreter selbst ist in C geschrieben und wurde auf eine Vielzahl von Systemen
portiert, darunter die meisten Unix-Derivate wie FreeBSD und Linux, aber auch Mi-
crosoft Windows. Eine lauffähige Installation von Perl umfasst neben dem Interpreter
mehrere hundert Bibliotheken, von denen die betriebssystemnahen und -spezifischen in
C, die übrigen in Perl programmiert sind. Ein Perlskript kann auf unterschiedliche Weise
aufgerufen werden. Trivial und nur für sehr wenige Codezeilen geeignet ist der parame-
terlose Aufruf des Interpreters aus der Shell des Betriebssystems. Das Skript erwartet
der Interpreter hierbei auf seiner Standardeingabe, sprich, der Anwender kann es direkt
auf der Tastatur eingeben:
$ p e r l
print ” he l l o , world\n” ;

Die Eingabe wird mittels der Tastenkombination STRG+D beendet, und die Zeichenkette
hello, world ausgegeben. Gleichwertig ist die Übergabe des Skriptinhaltes per Komman-
dozeilenparamter -e:
$ p e r l −e ’ p r i n t ” he l l o , world\n ” ; ’

In der Regel werden Perlskripte jedoch nicht flüchtig in (Klartext-)Dateien gespeichert,
deren Name auf den Zusatz .pl enden sollte. Zum Erstellen der Programmtexte wird
keine spezielle Entwicklungsumgebung benötigt. Ein einfacher Texteditor wie z.B. vi un-
ter Unix oder Notepad unter Windows genügen. Für grössere Projekte sollte jedoch auf
komfortablere Entwicklungswerkzeuge wie Eclipse13 oder OpenKomodo14 zurückgerif-
fen werden, die über Hilfsmittel wie Syntaxhighlighting, Code-Faltung, Templates, etc.
verfügen. Ein (auf der Festplatte gespeichertes) Skript kann dem Perl-Interpreter als
Kommandozeilenparameter zur Ausführung übergeben werden:
$ p e r l h e l l o . p l

Eleganter ist es unter unixartigen Betriebssystemen jedoch, die sogenannte Shebang-Zeile
zu verwenden. Dabei wird die erste Zeile des Perlskripts mit den beiden Zeichen #! und
der genauen Pfadangabe des Perlinterpreters eingeleitet. Für das Skript hello.pl ergibt
sich somit:
#!/ usr / b in / p e r l

print ” he l l o , world\n” ;

Die Shebang-Zeile dient dem Betriebssystemkernel als Hinweis, mit welchem Programm
das Skript auszuführen ist. Der Kernel wird in diesem Fall das Programm /usr/bin/perl
mit dem Parameter hello.pl starten. Ferner leitet die Raute in Perl einen Kommen-
tar ein, so dass die Shebang-Zeile das Skript nicht beeinflusst. Gibt man dem Skript
hello.pl noch per Aufruf von chmod a+x hello.pl Ausführungsrechte, kann es wie
ein gewöhnliches Programm gestartet werden:
13http://www.eclipse.org
14http://www.openkomodo.com

36

http://www.eclipse.org
http://www.openkomodo.com

5 PROGRAMMIERSPRACHEN 5.1 Perl

$. / h e l l o . p l

5.1.2. Variablen

Perl ist eine schwach typisierte Sprache, die keine explizite Variablendeklaration erfordert
und bei der sich der eigentliche Typ einer Variablen erst aus dem Kontext ergibt. Der
Name einer Variablen darf sich aus beliebigen alphanumerischen Zeichen inklusive des
Unterstrichs zusammensetzen mit der Bedingung, dass das erste Zeichen keine Zahl
ist. Zudem wird zwischen Gross- und Kleinschreibung unterschieden (case-sensitive), so
dass die Variablen $test und $Test nicht dieselbe Speicherstelle darstellen. Es existieren
folgende 5 Typen:

Scalare Ein Scalar ist ein eindimensionaler Datentyp, der

• Zeichenketten nahezu beliebiger Länge (nur begrenzt durch den virtuellen
Hauptspeicher)

• Ganzzahlwerte mindestens im Wertebereich des C-Typs int, also in der Regel
von −231 bis 231 − 1

• Gleitkommazahlen im Wertebereich des C-Typs double, also mit 53 Bit grosser
Mantisse und 11 Bit grossem Exponenten

speichern kann. Scalare werden durch ein dem Bezeichner vorangestelltes Dollar-
zeichen identifiziert, wie z.B. in $test.

Arrays Ein Array ist eine Liste oder Stack von Scalaren. Der Zugriff auf einzelne Werte
kann über einen impliziten numerischen Index erfolgen, welcher bei 0 beginnt und
bis zur Anzahl der Elemente minus 1 läuft. Ein Array wird per vorangestelltem At-
Zeichen identifiziert, wie z.B. in @liste. Einzelne Elemente, welche ja einen Scalar
darstellen, werden jedoch per Dollarzeichen und nachgestellter Elementnummer in
eckigen Klammern angesprochen. So stellt $liste[1] das zweite Element jenes
Arrays dar.

Hashes Ein Hash ist vergleichbar mit einem Array, bei dem die Indizierung jedoch über
beliebige Scalare erfolgt. Bildlich gesprochen besteht ein Hash aus einer Anzahl
von Schlüssel-/Wertepaaren. Hashes werden per vorangestelltem Prozentzeichen
angesprochen, einzelne Elemente (Scalare) jedoch per Dollarzeichen und nachge-
stelltem Schlüssel in geschweiften Klammern. So spricht $kunde{"Strasse"} den
Wert an, der im Hash %kunde unter dem Schlüssel Strasse abgelegt ist.

Filehandles Ein Filehandle stellt einen Input- oder Outputstream dar, der z.B. mit der
Funktion print beschrieben oder von der Funktion open zum Lesen aus einer
Datei geöffnet werden kann. Filehandles werden als einzige Ausnahme ohne Prefix
angesprochen.

Typeglobs Mit einem Typeglob wird ein Alias für einen anderen Bezeichner oder einen
Funktionsnamen in der internen Symboltabelle von Perl angelegt. Ein Typeglob ist
somit vergleichbar mit Referenzen in C++ oder Hardlinks in Dateisystemen. Das
Prefixzeichnen für Typeglobs ist das Sternchen. In folgendem Beispiel wird für den
Scalar $a der Typeglob *b angelegt. Danach kann $b wie $a verwendet werden:
$a = ” he l l o , world” ;
∗b = ∗a ;
$b = ” ha l l o , welt ” ;
print $a ; # Gibt ” ha l l o , we l t ” aus , we i l b e in Typeglob f ü r a i s t

37

5 PROGRAMMIERSPRACHEN 5.1 Perl

Zu beachten ist, dass ein Typeglob über den Namen gebildet wird, so dass nach
obigem Beispiel auch die Arrays @a und @b, die Hashes %a und %b, usw. identisch
sind.

Jeder Variablentyp besitzt in Perl seinen eigenen Namensraum, so dass man z.B. einen
Scalar $test, einen Hash %test und eine Funktion (s.u.) namens test anlegen kann.
Zwecks Verständlichkeit sollte man davon jedoch selten bis gar nicht Gebrauch machen.
Wertzuweisungen erfolgen wie in anderen Programmiersprachen per Gleichheitszeichen.
Nicht deklarierte oder nicht initialisierte Variablen haben den Metawert undef. Boolsche
Ausdrücke werden wie in C behandelt. Zu logisch falsch evaluieren:

• Variablen im Zustand undef

• ein Scalar mit dem numerischen Wert 0

• ein Scalar, der eine Zeichenkette der Länge 0 darstellt

• ein leeres Array

• ein leerer Hash

Zeichenketten werden in einfachen oder doppelten Anführungsstrichen notiert; innerhalb
doppelter Anführungsstriche werden Variablen expandiert:

$a = ” t e s t ” ;
$b = ” t h i s i s a $a” ; # $a wird expand i e r t
$c = ’ t h i s i s a $a ’ ; # $a wird n i ch t expand i e r t

Der Scalar $a enthält die Zeichenkette test, $b ist this is a test, $c hingegen this
is a $a. Möchte man innerhalb doppelter Anführungsstriche reservierte Zeichen wie
Variablenprefixe verwenden, müssen diese mit einem vorangestellten Backslash maskiert
werden, was gemeinhin escapen genannt wird:

$d = ” th i s i s a \$a” ; # $a wird n i ch t a l s Var iab l e erkannt

Numerische Werte können als ganze Zahl, in Kommaschreibweise oder als Exponenten-
darstellung zur Basis 10 eingegeben werden:

$year = 2007 ;
$p i = 3 . 1415 ;
$m i l l i o n = 1e6 ;
$zah l = −4.711e−43;

Arrays werden als Liste von Scalaren innerhalb runder Klammern zugewiesen:

@namen = (”Meier ” , ”Schmidt” , ” Schuster ”) ;
@ l i s t e = (”Tisch ” , 5 , 1 . 5) ;
@elemente = () ;

Dem Array @elemente wird eine leere Liste zugewiesen. Dies ist ein typisches Konstrukt,
um eine nicht initialisierte Variable zu vermeiden. Ein Array kann auch aus einem schon
definierten Array Werte erhalten:

@ange s t e l l t e = @namen ;
@mitarbe i ter = (”Chef1” , ”Chef2” , @namen) ;

Ferner kann man aus einem Array nur bestimmte Elemente in eine neue Liste überneh-
men. Dies wird (Array-)Slice genannt:

@a = @mitarbe i ter [1 . . 3] ;
@b = @mitarbe i ter [0 , 0 , 4] ;
@c = @mitarbe i ter [9 9] ;

38

5 PROGRAMMIERSPRACHEN 5.1 Perl

Das Array @a enthält somit den zweiten bis vierten Mitarbeiter, @b zweimal den ersten
und einmal den fünften Mitarbeiter. Eine offensichtliche Arraygrenzüberschreitung wie
in der Zuweisung von Array @c erzeugt keinen Fehler oder Warnung, sondern (in diesem
Fall) lediglich ein leeres Array. Hashes können wie Arrays als Liste initialisiert werden,
bei der alle Elemente an ungeraden Indizes als Schlüssel und alle Elemente an geraden
Indizes als Werte betrachtet werden:
%geha l t = (”meier ” , 2200 , ” s chu l z e ” , 2500) ;

Verwendet man zwischen den Elementen mit ungeradem und geradem Index statt eines
Kommas jeweils den äquivalenten Operator =>, wird obiges Beispiel verständlicher:
%geha l t = (”meier ” => 2200 , ” s chu l z e ” => 2500) ;

Im Hash %gehalt wird somit dem Eintrag meier der Wert 2200, dem Eintrag schulze
der Wert 2500 zugeordnet. Umgekehrt lässt sich auch ein Hash einem Array zuweisen:
@l i s t e = %geha l t ;

Das Array @liste enthält hiernach alle Schlüssel-/Wertepaare als flache Liste.
In Perl gibt es ferner die Möglichkeit, von fast allen aufgeführten Datentypen sogenannte
Referenzen zu bilden. Dies sind Zeiger oder auch Pointer, wie man sie von anderen Spra-
chen kennt. Eine Referenz ist selbst ein Scalar, der den Typ der referenzierten Variable
(Scalar, Array, Hash, usw.) und deren Speicheraddresse beinhaltet. Die Referenz einer
Variablen wird mit dem Backslash gebildet:
$ a r r a y r e f = \@array ;

Der Scalar $array ref ist nun eine Referenz (ein Zeiger) auf das Array @array. Der
Zugriff auf die sich hinter einer Referenz befindlichen Variablen, sprich die Dereferenzie-
rung, erreicht man, indem man vor die Referenz das Prefix des ursprünglichen Datentyps
stellt:
@l i s t e = @{ $ a r r a y r e f } ;

Das Array @liste ist nun eine inhaltliche Kopie von @array. Die Dereferenzierung weist
syntaktische und inhaltliche Ähnlichkeit zum Typecasting in C und artverwandten Spra-
chen auf. So erzeugt das Dereferenzieren von $array ref in einen Hash einen Laufzeit-
fehler (”Can’t coerce array into hash”):
%hash = @{ $ a r r a y r e f } ;

Wegen der Operatorpräzedenz kann man hier auf die geschweiften Klammern verzichten:
%hash = @$array re f ;

Der Zugriff auf ein einzelnes Element des Arrays über seine Referenz geschieht nicht über
das At-Zeichen, sondern über Dollarzeichen, da man ja einen Scalar erhalten möchte.
Hierbei sind geschweifte Klammern jedoch obligatorisch:
$elem = ${ $ a r r a y r e f } [0] ;

Für C-Programmierer vertrauter und eleganter ist der Zugriff über den Operator ->:
$elem = $ar r ay r e f −> [0];

Analog werden Referenzen von Scalaren behandelt:
$ s t r i n g = ” he l l o , world\n” ;
$ s c a l a r r e f = \ $ s t r i n g ;
print ${ $ s c a l a r r e f } ; # Gibt ” h e l l o , world ” aus

Der Umgang mit Hashreferenzen ähnelt dem von Arrayreferenzen. Auch hierbei kann
zwischen dem Dereferenzierungsoperator und der Dereferenzierung per geschweifter
Klammern gewählt werden:

39

5 PROGRAMMIERSPRACHEN 5.1 Perl

%farben = (” red ” => ” ro t ” , ” blue ” => ”blau ” , ” green ” => ”grün”) ;
$ f a r b e n r e f = \%farben ;
print $ f a rb en r e f −>{” blue ” } ; # g i b t b l au aus
print ${ $ f a r b e n r e f }{” red ” } ; # g i b t ro t aus

Eine Ausnahme bilden lediglich Filehandles. Sie können nicht referenziert werden. Re-
ferenzen können jedoch nicht nur von Variablen gebildet werden. Perl gestattet es, Da-
tenstrukturen direkt als Referenz im Speicher anzulegen (ähnlich einer auf dem Stack
initialisierten Struktur in C). Man spricht dann von einem anonymen Array, anonymen
Scalar, usw. Von Vorteil ist hierbei, dass man einen (oftmals nicht wieder benötigten)
Bezeichner spart. Ausserdem werden mehrdimensionale oder komplexe Datenstrukturen
über derartige Referenzen auf anonyme Speicherbereiche gebildet. Ein anonymer Scalar
wird erzeugt, indem man vor den eigentlichen Wert den Referenzoperator \ schreibt:

$ s t r i n g r e f = \” he l l o , world” ;
$ i n t e g e r r e f = \23 ;
$ r e a l r e f = \42 . 2 3 ;

Die eigentlichen Werte erhält man nun wieder per Dereferenzierung:

print $ $ s t r i n g r e f ; # g i b t ” h e l l o , world ” aus
print $ $ i n t e g e r r e f ; # g i b t 23 aus
print $ $ r e a l r e f ; # g i b t 42.23 aus

Für anonyme Arrays und Hashes existieren jeweils eigene Operatoren, da es keinen prin-
zipiellen Unterschied in deren Initialisierung gibt und Perl daher nicht unterscheiden
könnte, ob eine anonyme Liste ein Array oder einen Hash darstellt. Die Werte für an-
onyme Arrays werden in eckige Klammern gefasst:

$m i t a r b e i t e r r e f = [”Meier ” , ”Schmidt” , ” Schulze ”] ;
print $m i t a r b e i t e r r e f −> [2]; # g i b t ” Schu l ze ” aus

Anonyme Hashes werden hingegen per geschweifter Klammern deklariert:

$ f a r b e n r e f = {
” ye l low ” => ” ge lb ” ,
” gray” => ”grau” ,
” black ” => ” schwarz”

} ;
print $ f a rb en r e f −>{” ye l low ” } ; # g i b t ” g e l b ” aus

Mehrdimensionale Datentypen können prinzipiell auf zwei Arten gebildet werden. So
ist es möglich, als Datentyp erster Dimension ein benanntes Array oder einen Hash zu
werden, deren Werte dann jeweils Referenzen auf weitere Arrays oder Hashes sind:

@rechteck = ([0 , 0] , [1 , 0] , [1 , 1] , [0 , 1]) ;

Das Array @rechteck enthält vier Werte, nämlich 4 Referenzen auf je ein anonymes Ar-
ray, welche wiederum je zwei Scalare enthalten. Einzelne Werte dieses Arrays kann man
nun über Dereferenzierung oder über die aus anderen Programmiersprachen bekannte
Matrixschreibweise ansprechen:

$oben l i nk s y = $rechteck [3] − > [1] ;
$un t en l i nk s x = $rechteck [0] [0] ;

Analog kann man einen Hash mit anonymen Arrays definieren:

%rechteck = (
l i nk s un t en => [0 , 0] ,
r e ch t s unten => [1 , 0] ,
r e cht s oben => [1 , 1] ,
l i nk s oben => [0 , 1]

) ;

40

5 PROGRAMMIERSPRACHEN 5.1 Perl

Auch hierbei sind wieder beide Zugriffsarten möglich:
$oben recht s x = $rechteck {” recht s oben ” } [0] ;
$unten recht s y = $rechteck {” recht s unten ”}−>[1];

Weitaus häufiger wird man jedoch komplexe Strukturen komplett aus anonymen Daten
konstruieren, z.B. als Referenz auf einen Hash aus Referenzen auf Hashes:
$rechteck = {

l i n k s un t en => {
x => 0 ,
y => 0

} ,
r e ch t s unten => {

x => 1 ,
y => 0

} ,
r e cht s oben => {

x => 1 ,
y => 1

} ,
l i nk s oben => {

x => 0 ,
y => 1

}
} ;

Der Zugriff sollte hierbei zwecks Lesbarkeit über den Dereferenzierungsoperator erfolgen:
$unten recht s x = $rechteck−>{” recht s unten ”}−>{”x” } ;

5.1.3. Gültigkeitsbereich

In Perl müssen Variablen nicht explizit deklariert werden. Sie existieren ab ihrer er-
sten Verwendung. Ebenso werden nicht mehr referenzierte Speicherbereiche automatisch
durch einen garbage collector freigegeben. Dennoch sollte ein Programmierer von den
Möglichkeiten Gebrauch machen, die Perl zur strukturierten Programmierung bereit
hält. Lokale Variablen innerhalb eines Blocks oder einer Funktion (s. Kapitel 5.1.7) wer-
den i.d.R. per my erzeugt, so dass sie ausserhalb jenes Blocks und über Funktionsaufrufe
hinweg nicht sichtbar ist. Datei-globale Bezeichner können ebenfalls per my angelegt wer-
den, werden jedoch meistens mit our deklariert. Dies hat vor allem stilistische Gründe:
Eine per our global deklarierte Variable kann innerhalb eines Blocks oder einer Funktion
ebenfalls per our deklariert werden und hat dann den Wert der globalen Variablen. Mit-
tels my angelegte Veränderliche hingegen haben grundsätzlich einen neu initialisierten
Speicherbereich zur Folge: Sie verdecken globale Variablen. Ferner kann auf Variablen,
die in einem Modul (s. Kapitel 5.1.8) mit my angelegt wurden, nicht von ausserhalb
zugegriffen werden.

5.1.4. Operatoren

Da Perl eine schwach typisierte Sprache ist, kommen den Operatoren eine besondere Be-
deutung zu. Variabeln werden anhand der Argumenttypen ausgewertet, die ein Operator
erwartet. So stellt z.B. der folgende Ausdruck eine korrekte Addition dar:
$e rgebn i s = 10 + 0 .5 + ”10” + ” 2 .5 ” ;

Der Scalar $ergebnis enthält nun den numerischen Wert 23. Die in Perl zur Verfügung
stehenden Operatoren sind weitestgehend von C übernommen:

41

5 PROGRAMMIERSPRACHEN 5.1 Perl

Tabelle 2: Ausgewählte Operatoren in Perl

Operator Beschreibung
++ inkrementiert einen Scalar numerisch
-- dekrementiert einen Scalar numerisch
+, - addiert bzw. subtrahiert zwei Scalare numerisch
/ dividiert zwei Scalare, Ergebnis kann ein Integer- oder Real-

wert sein
* multipliziert zwei Scalare
% Rest einer Ganzzahldivision
! negiert einen Ausdruck
** exponentiert einen Scalar
$# liefert den Index des letzten Elementes eines Arrays
x wiederholt einen Scalar n-Mal: "a" x 3 liefert "aaa"
. verbindet zwei Scalare als Zeichenkette
<FILEHANDLE > liest die nächste Zeile von FILEHANDLE
qw($SCALAR1
$SCALAR2 ...)

erzeugt aus den aufgeführten Scalaren ein Array, ohne die
Notwendigkeit, Zeichenketten in Hochkommata zu setzen und
Kommata zwischen den Scalaren zu verwenden

<<, >> bitweises Schieben eines Scalars nach links bzw. rechts
<, >, <=, >= prüft zwei Scalare numerisch auf kleiner, grösser, kleiner-gleich

bzw. grösser-gleich
lt, gt, le, ge prüft zwei Scalare textuell auf kleiner, grösser, kleiner-gleich

bzw. grösser-gleich
==, != prüft zwei Scalare numerisch auf Gleichheit bzw. Ungleichheit
<=> vergleicht zwei Scalare numerisch: 1 <=> 2 liefert -1, 1 <=>

1 liefert 0, 2 <=> 1 liefert 1
eq, ne vergleicht zwei Scalare textuell
cmp vergleicht zwei Scalare textuell: "a" cmp "b" liefert -1,

"a" cmp "a" liefert 0, "b" cmp "a" liefert 1
&, |, ^ bitweise Und-, Oder- bzw. Xor-Verknüpfung zweier Scalare
&&, || logische Und- bzw. Oder-Verknüpfung
= Wertzuweisung
+=, -=, *=, /=, %=,
<<=, >>=, .=, &&=,
||=

wendet die vor dem Gleichheitszeichen stehende Operation
auf die Zielvariable an und weist ihr das Ergebnis zu: $a *=
3 multipliziert $a mit 3, $b .= "hallo, welt" fügt an das
Ende von $b die Zeichenkette hallo, welt hinzu

=~, !~ prüft einen Scalar gegen ein Textmuster (s. Kapitel 5.1.5): =~
gibt bei Übereinstimmung 1 bzw. logisch wahr, bei Nichtüber-
einstimmung 0 bzw. logisch falsch zurück, !~ ist die Negation
von =~

5.1.5. Reguläre Ausdrücke

Ein Regulärer Ausdruck (auch regular expression (regex)) stellt eine Vorschrift dar, gegen
die ein Scalar bzw. eine Zeichenkette geprüft werden kann. Ein Regex ist eine vereinfachte
Alternative zu einem lexikalischen Parser. Man kann ihn sich als eine Art Schablone
vorstellen, die über einen zu prüfenden Text gelegt wird. Neben dem prinzipiellen Test, ob
ein regulärer Ausdruck auf einen Text überhaupt zutrifft, kann Perl bestimmte Teile des

42

5 PROGRAMMIERSPRACHEN 5.1 Perl

Regex’s bzw. des Textes zurückliefern oder auch ersetzen. Derartige Tests werden durch
die in Kapitel 5.1.4 aufgeführten Operatoren =~ bzw. !~ eingeleitet. Der eigentliche Regex
wird per Konvention in Schrägstriche gefasst. Im folgenden Beispiel wird überprüft, ob
der Scalar $name die Zeichenkette schulze enthält:

$name =˜ / schu l z e /

Möchte man innerhalb des regulären Ausdrucks Schrägstriche verwenden, müssen diese
maskiert werden:

$p r e i s =˜ /Euro\/kg/

Alternativ kann der Regex mit einem kleinen m (für match) eingeleitet werden. Somit
können statt der Schrägstriche Zeichen verwendet werden, die nicht im Regex vorkom-
men:

$p r e i s =˜ m@Euro/kg@

Soll ein Ausdruck unabhängig von Gross- und Kleinschreibung zutreffen (case-insensi-
tive), so muss ein kleines i angehängt werden:

$name =˜ / schu l z e / i

Dieser Ausdruck wird wahr, sofern die Variable $name eine der Zeichenketten Schulze,
schulze, scHulzE o.ä. enthält. Die Sonderzeichen ^ und $ treffen auf den Anfang bzw.
das Ende einer Zeichenkette zu:

$name =˜ /ˆ Schulze$ /

Hier müsste $name genau die Zeichenkette Schulze enthalten. Innerhalb eines regulären
Ausdrucks lassen sich bedingt logische Operatoren verwenden:

$name =˜ /Sch | ber /

Dieser Ausdruck trifft auf Namen zu, die Sch oder ber enthalten, also z.B. Schmidt,
Obermann, Schober, etc. Möchte man lediglich an einer Position eine Variation zulassen,
so müssen eckige Klammern eingesetzt werden:

$ a r t i k e l =˜ /T[ea] s t e r /

Mit diesem Regex werden alle Zeichenketten erkannt, die Tester oder Taster enthalten.
Leitet man eine solche in eckigen Klammern gefasste Zeichenklasse mit dem Negations-
operator ^ ein, so trifft der Ausdruck nur dann zu, wenn an der entsprechenden Stelle
die aufgeführten Zeichen nicht stehen:

$ a r t i k e l =˜ /T[ˆ ea] s t e r /

Hier treffen alle Zeichenketten wie z.B. Tqster, T8ster, Tister zu, nicht aber Tester
und Taster. Innerhalb einer Zeichenklasse kann zur Vereinfachung auch ein Bereich von
Zeichen angegeben werden:

$ a r t i k e l =˜ /T[e−o] s t e r /

Dieser Ausdruck wird nur wahr, wenn $artikel den String Tester, Tfster, ... , Tnster
oder Toster enthält. Zusätzlich stehen innerhalb regulärer Ausdrücke die in Tabelle 3
vordefinierten Zeichenklassen zur Verfügung.

Tabelle 3: Vordefinierte Zeichenklassen in regulären Ausdrücken

Zeichenklasse Beschreibung
. trifft auf jedes Zeichen zu
\d trifft auf eine Ziffer zu

43

5 PROGRAMMIERSPRACHEN 5.1 Perl

Tabelle 3: Vordefinierte Zeichenklassen in regulären Ausdrücken (Forts.)

Zeichenklasse Beschreibung
\D trifft auf jedes Zeichen ausser einer Ziffer zu
\w trifft auf alphanumerische Zeichen und den Unterstrich zu
\W trifft auf jedes Zeichen ausser alphanumerischen und den Un-

terstrich zu
\s trifft auf Leerzeichen und Tabulatoren (Whitespaces) zu
\S trifft auf jedes Zeichen ausser Whitespaces zu

Ferner können Quantifizierungsoperatoren eingesetzt werden, mit denen angegeben
wird, wie oft ein Zeichen im zu prüfenden Text vorkommen muss. Das Fragezeichen
steht hierbei für ein null- oder einmaliges Vorkommen, das Pluszeichen für ein mindestens
einmaliges und das Sternchen für ein beliebig häufiges Vorkommen. So ist die folgende
Aussage wahr, wenn der Scalar $name "Ana", "Anna", "Annna" usw. enthält:
$name =˜ /An+a/

Das Fragezeichen steht für null- oder einmaliges Vorkommen:
$ r e i s e =˜ / S c h i f f f ? ahrt /

Dieser Ausdruck lässt das Wort Schiffahrt sowohl in alter als auch in neuer Recht-
schreibung gelten. Mithilfe von geschweiften Klammern lassen sich Wiederholungen frei
definieren:
$einkommen =˜ /\d{3}/

Der Scalar $einkommen muss hier aus mindestens 3 Ziffern bestehen, damit der Ausdruck
wahr wird.
$p r e i s =˜ /\d{3 ,6}/
$password =˜ /\w{4 ,}/

Hier muss $preis aus mindestens 3, aber höchstens 6 Ziffern bestehen, während für
$password 4 oder mehr alphanumerische Zeichen gefordert sind. Reguläre Ausdrücke
können nicht zum einfachen Testen eines Scalars dienen, sondern auch, um erkann-
te Passagen zur weiteren Verarbeitung in Variablen zu speichern. Hierzu werden die
gewünschten Passagen in runde Klammern gefasst. Trifft der Regex zu, stehen die er-
kannten Textstücke in den Variablen $1, $2, $3 usw. zur Verfügung:
$name =˜ /(John) (Smith)/

Enthält der Scalar $name tatsächlich den Namen John Smith, so steht nach dem Regex-
Test der Vorname in der Variablen $1, der Nachname in $2 zur Verfügung. In der Regel
wird man einen solchen Test mit Zeichenklassen definieren, um z.B. einen Parser für
Konfigurationsdateien zu konstruieren:
$ z e i l e =˜ / ˆ ([ˆ \ :])+ : \ s +(.∗) $/

Dieser Ausdruck trifft auf Zeilen zu, die mit einem oder mehreren Zeichen ausser dem
Doppelpunkt beginnen, dann einen Doppelpunkt und mindestens ein Whitespace-Zei-
chen aufweisen, und mit einer beliebigen Anzahl beliebiger Zeichen enden. Somit werden
z.B. Email: fjo@ogris.de oder Option: Wert erkannt. Anschliessend steht in $1 der
Wert Email bzw. Option und in $2 der String fjo@ogris.de bzw. Wert.
Ferner lassen sich mit regulären Ausdrücken auch Texte ersetzen. Hierzu muss der Regex
mit einem kleinen s (für substitute) eingeleitet werden:
$ z e i l e =˜ s/ a l t e r Text/neuer Text/

44

5 PROGRAMMIERSPRACHEN 5.1 Perl

Dieser Ausdruck ersetzt das erste Vorkommen von alter Text im Scalar $zeile durch
neuer Text. Möchte man hingegen jedes Vorkommen von alter Text ersetzen, muss
man den Ausdruck als gierig bzw. greedy markieren:

$ z e i l e =˜ s/ a l t e r Text/neuer Text/g

Fasst man im Suchmuster einzelne Textpassagen in runde Klammern, so stehen diese im
Ersatztext über die Variablen $1, $2 usw. zur Verfügung:

$p r e i s =˜ s /(\d+) DM/$1 EUR/g

Mit diesem Ausdruck werden alle Preisangaben wie 19 DM in 19 EUR umgesetzt.

5.1.6. Kontrollstrukturen

Sieht man von einer mehrfachen Fallunterscheidung wie switch/case ab, so bietet Perl alle
aus C bekannten Kontrollstrukturen. Zusätzlich stehen einige Schlüsselwörte für perl-
typische Datenstrukturen (Arrays, Hashes) bereit. Tabelle 4 listet die gebräuchlichsten
Kontrollstrukturen auf.

Tabelle 4: Ausgewählte Anweisungen in Perl

Anweisung Beschreibung
for (INIT ; CHECK ; LOOP)
{
BLOCK

}

führt die durch BLOCK gegebenen Anweisungen aus,
bis CHECK logisch falsch wird; bei Schleifenbeginn
wird INIT ausgeführt, bei jedem Schleifendurchgang
LOOP

foreach $SCALAR (@ARRAY)
{
BLOCK

}

führt die durch BLOCK gegebenen Anweisungen für
jedes Element des Arrays @ARRAY aus, das jeweils
aktuelle Element steht – falls angegeben – in $SCA-
LAR zur Verfügung, sonst in der impliziten Variablen
$

while (CHECK) {
BLOCK

}

führt die durch BLOCK gegebenen Anweisungen aus,
solange CHECK logisch wahr ist

until (CHECK) {
BLOCK

}

führt die durch BLOCK gegebenen Anweisungen aus,
solange CHECK logisch falsch ist

do {
BLOCK

} while (CHECK)

führt die durch BLOCK gegebenen Anweisungen aus,
solange CHECK logisch wahr ist

do {
BLOCK

} until (CHECK)

führt die durch BLOCK gegebenen Anweisungen aus,
solange CHECK logisch falsch ist

while (($key, $value) =
each (%HASH)) {
BLOCK

}

each ist ein zustandsbehafteter Operator, der bei je-
dem Zugriff das jeweils nächste Schlüssel-/Wertepaar
des Hashes liefert; hier werden die durch BLOCK ge-
gebenen Anweisungen über alle Elemente von HASH
iteriert

if (CHECK) {
BLOCK

}

führt die durch BLOCK gegebenen Anweisungen aus,
falls CHECK logisch wahr ist

45

5 PROGRAMMIERSPRACHEN 5.1 Perl

Tabelle 4: Ausgewählte Anweisungen in Perl (Forts.)

Anweisung Beschreibung
if (CHECK) {
BLOCK1

} else {
BLOCK2

}

führt die durch BLOCK1 gegebenen Anweisungen
aus, falls CHECK logisch wahr ist, sonst die durch
BLOCK2 dargestellten Anweisungen

if (CHECK1) {
BLOCK1

} elsif (CHECK2) {
BLOCK2

} ...
} elsif (CHECKn) {
BLOCKn

} else {
BLOCK

}

führt die durch BLOCK1 gegebenen Anweisun-
gen aus, falls CHECK1 logisch wahr ist, sonst
die durch BLOCK2 gegebenen Anweisungen aus,
falls CHECK2 logisch wahr ist, ..., sonst die durch
BLOCK dargestellten Anweisungen

unless (CHECK) {
BLOCK

}

führt die durch BLOCK gegebenen Anweisungen aus,
falls CHECK logisch falsch ist; unless stellt die Ne-
gation von if dar, so dass alle o.g. Darstellungen für
if auch für unless gültig sind

STATM if (CHECK) führt die durch STATM gegebene Anweisung aus,
falls CHECK logisch wahr ist

STATM unless (CHECK) führt die durch STATM gegebene Anweisung aus,
falls CHECK logisch falsch ist

Funktionale Blöcke werden wie in C durch geschweifte Klammern gebildet. Ebenso
müssen Anweisungen mit einem Semikolon abgeschlossen werden. Im Gegensatz zu an-
deren Programmiersprachen gibt es keine explizite Hauptroutine wie z.B. main() in C
oder den Zwang, einen Einsprungspunkt wie in Assembler definieren zu müssen. Statt-
dessen werden die sich nicht in Funktionen (s. Kapitel 5.1.7) befindlichen Anweisungen
sequentiell abgearbeitet (sofern nicht durch Schleifen, Verzweigungen, etc. anders vorge-
geben). Ein triviales, dennoch vollständiges Perlskript sieht also wie folgt aus:

#!/ usr / b in / p e r l

$ausgabe = ” he l l o , world\n” ;
print $ausgabe ;

Den Pfadnamen, unter dem das Skript aufgerufen wurde, hinterlegt der Perlinterpreter
in der Variablen $0. Kommandozeilenargumente stehen im Array @ARGV bereit. Vom Be-
triebssystem definierte Umgebungsvariablen finden sich im Hash %ENV. Standardmässig
sind die Filehandles STDOUT und STDERR zum Schreiben sowie STDIN zum Lesen geöffnet.

5.1.7. Funktionen

Eigene Funktionen werden mit dem Schlüsselwort sub definiert. Der eigentliche Funkti-
onsblock wird in geschweifte Klammern gefasst. Verschachtelte Funktionen wie in Pascal
werden nicht unterstützt. Wie in C werden Funktionsparameter in runden Klammern
übergeben. Anzahl und Typ der Funktionsargumente können deklariert werden:

46

5 PROGRAMMIERSPRACHEN 5.1 Perl

sub t e s t ($$)
{

. . .
}

sub t e s t 2 (%@)
{

. . .
}

Die Funktion test erwartet pro forma zwei Scalare (oder Referenzen, die ja ebenfalls
Scalare sind). test2 erwartet einen Hash und ein Array, oder Referenzen auf derartige
Datentypen. Die tatsächliche Parameterübergabe findet jedoch immer per Liste statt.
Dieses steht jeder Funktion unter dem Array @ zur Verfügung. Werden Arrays oder
Hashes einer Funktion nicht als Referenzen übergeben, werden diese linearisiert und
ihre Elemente in das Array @ kopiert. Sofern man also call-by-value verwendet, sind
innerhalb einer Funktion die übergebenen Werte nicht mehr eindeutig zuordbar. Zudem
entscheidet die Art des Funktionsaufrufes, ob ungültige Funktionsparameter zu einem
Fehler führen:
t e s t ” ha l l o ” , ”welt ” ; # ok
t e s t ” ha l l o ” ; # Fehler
t e s t (” ha l l o ” , ”welt ”) ; # ok
t e s t (” ha l l o ”) ; # Fehler
&t e s t (” ha l l o ” , ”welt ”) ; # ok
&t e s t (” ha l l o ”) ; # ok !

Daher wird in Perl meist auf eine Parameterdeklaration verzichtet und das Array @ als
Stack von Funktionsparametern ausgewertet:
sub t e s t 3 ()
{

$ s t r i n g1 = $ [0] ;
$ s t r i n g2 = $ [1] ;

. . .
}

Oftmals werden Funktionsparameter per Hash übergeben:
&dru c k e z e i l e (

t ex t => ” he l l o , world” ,
f a rbe => ” ro t ”

) ;

Der entsprechende Funktionsrumpf beginnt dann wie folgt:
sub d r u c k e z e i l e ()
{

%param = @ ;
$text = $param{” text ” } ;
$ f a rbe = $param{” fa rbe ” } ;

}

Dies ist möglich, da Hashes und Arrays aufgrund ihres Listencharakters ineinander umge-
wandelt werden können. Die Vorteile dieser Art der Parameterübergabe sind Flexibilität
und Transparenz: Weitere Parameter können durch Erweiterung des übergebenen Hash
hinzugefügt werden, und sowohl beim Aufruf als auch in der Funktion ist erkennbar,
welche Argumente zu übergeben sind. Rückgabewerte müssen ebenso nicht deklariert
werden. Jede Funktion gibt implizit ein Array zurück, dass vom Aufrufer als Scalar,
Hash oder einfach als Array interpretiert werden kann. Es ist generell Aufgabe des Pro-
grammierers sicherzustellen, dass sowohl aufrufende als auch aufgerufene Funktion die

47

5 PROGRAMMIERSPRACHEN 5.1 Perl

gleiche Signatur erwarten. Verzichtet man bei einem Funktionsaufruf auf explizite Über-
gabe jeglicher Parameter, so wird der aufgerufenen Funktion automatisch das Array @
der aufrufenden Funktion übergegeben:

&t e s t ; # bekommt mein @ übergeben

Analog zu Datentypen können auch Referenzen auf Funktionen gebildet werden:

sub t e s t ()
{

. . .
}

$ t e s t r e f = \&t e s t

Der Aufruf muss per Dereferenzierung erfolgen:

&{ $ t e s t r e f } () ;
$ t e s t r e f −>();

Ebenso ist es möglich, anonyme Funktionen anzulegen:

$ t e s t r e f = sub {
. . .

} ;

&{ $ t e s t r e f } () ;

Der Scalar $test ref ist somit eine Referenz auf eine Funktion und kann dementspre-
chend eingesetzt werden.
Im Gegensatz zu C bietet Perl eine umfangreiche Anzahl von internen Funktionen, von
denen einige in Tabelle 5 aufgeführt sind.

Tabelle 5: Ausgewählte Funktionen in Perl

Funktion Beschreibung
chr($SCALAR) lieft das ASCII-Zeichen mit der Nummer $SCALAR
hex($SCALAR) liefert die hexadezimale Zahl $SCALAR als Dezimal-

zahl
index($SCALAR1,
$SCALAR2, $SCALAR3)

sucht $SCALAR2 in $SCALAR1 (Vorwärtssuche),
optional ab Position $SCALAR3, liefert -1, falls
$SCALAR2 nicht in $SCALAR1 enthalten ist

rindex($SCALAR1,
$SCALAR2, $SCALAR3)

sucht $SCALAR2 in $SCALAR1 (Rückwärtssuche),
optional ab Position $SCALAR3, liefert -1, falls
$SCALAR2 nicht in $SCALAR1 enthalten ist

lc($SCALAR) liefert $SCALAR in Kleinbuchstaben
uc($SCALAR) liefert $SCALAR in Grossbuchstaben
length($SCALAR) liefert die Länge von $SCALAR
reverse($SCALAR),
reverse($ARRAY)

liefert $SCALAR bzw. $ARRAY in umgekehrter Rei-
henfolge

substr($SCALAR1,
$SCALAR2, $SCALAR3)

liefert oder setzt den Teilstring von $SCALAR1
ab Position $SCALAR2, optional mit maxima-
ler Längenangabe $SCALAR3 ; substr("test",
1) liefert est, substr("test", 1, 2) liefert es,
substr($name, 0, 3) = "Abc" ersetzt die ersten
drei Zeichen in $name durch Abc

48

5 PROGRAMMIERSPRACHEN 5.1 Perl

Tabelle 5: Ausgewählte Funktionen in Perl (Forts.)

Funktion Beschreibung
split($SCALAR1,
$SCALAR2, $SCALAR3)

teilt $SCALAR2 an den durch den Regex in $SCA-
LAR1 gegebenen Stellen auf (optional limitiert durch
die Anzahl in $SCALAR3) und liefert ein Array mit
den verbleibenden Teilstrings

pop @ARRAY entfernt das letzte Element von @ARRAY und liefert
es zurück

push @ARRAY, $SCALAR fügt $SCALAR an das Ende von @ARRAY hinzu
shift @ARRAY entfernt das erste Element von @ARRAY und liefert

es zurück; fehlt die Angabe eines Arrays, wird das
erste Element vom Array @ (s. Kapitel 5.1.7) entfernt

unshift @ARRAY, $SCALAR fügt $SCALAR an den Anfang von @ARRAY hinzu
join($SCALAR, @ARRAY) liefert @ARRAY als Zeichenkette, wobei alle Ele-

mente mit $SCALAR verbunden sind
map { BLOCK } @ARRAY führt BLOCK für jedes Element von @ARRAY aus;

innerhalb von BLOCK kann auf das aktuelle Array-
element lesend und schreibend per Variable $ zuge-
griffen werden; Rückgabewert ist das evtl. modifizier-
te Array

sort { BLOCK } @ARRAY liefert @ARRAY textuell sortiert; optional wird
für jeden Vergleich (Quicksort-Algorithmus) BLOCK
ausgeführt, der jeweils zwei zu vergleichende Elemen-
te in den Variablen $a und $b erhält und -1, 0 oder 1
zurückliefern soll, wenn $a kleiner, gleich bzw. grösser
$b ist

keys %HASH liefert alle Schlüssel des Hashes als (unsortiertes) Ar-
ray

values %HASH liefert alle Werte des Hashes als (unsortiertes) Array
delete $HASH{$ELEM} löscht das durch den Schlüssel $ELEM dargestellte

Schlüssel-/Wertepaar aus dem Hash
exists $HASH{$ELEM} liefert logisch wahr, falls der Schlüssel $ELEM im

Hash %HASH existiert
binmode(FILEHANDLE) zeigt an, dass die durch FILEHANDLE dargestellte

Datei Binärdaten enthält
close(FILEHANDLE) schliesst die durch FILEHANDLE dargestellte Datei
flock(FILEHANDLE,
$SCALAR)

sperrt die durch FILEHANDLE dargestellte Datei

• exklusiv, wenn $SCALAR 2 ist (pro Datei darf
nur ein Prozess gleichzeitig eine exklusive Sper-
re halten) (Write-Lock)

• zum Schreiben, wenn $SCALAR 1 ist (pro Da-
tei dürfen unendlich viele Prozesse gleichzeitig
ein solches Read-Lock halten, solange keine ex-
klusive Sperre vorliegt);

hebt eine Dateisperre auf, wenn $SCALAR den Wert
8 hat

49

5 PROGRAMMIERSPRACHEN 5.1 Perl

Tabelle 5: Ausgewählte Funktionen in Perl (Forts.)

Funktion Beschreibung
die($SCALAR) beendet die Ausführung des Skripts mit einem Fehler,

der optional per $SCALAR erläutert werden kann
print(@ARRAY) gibt alle Elemente von @ARRAY aus
open(FILEHANDLE,
$SCALAR)

öffnet die durch $SCALAR angegebene Datei zum
Lesen

open(FILEHANDLE, ">",
$SCALAR)

öffnet die durch $SCALAR angegebene Datei
zum Beschreiben; alternativ kann die Syntax
open(FILEHANDLE, ">DATEINAME") verwendet wer-
den

caller($SCALAR) liefert Informationen über die aufrufende Funktion,
optional über die aufrufende Funktion, falls $SCA-
LAR 1 ist, über die Grosselternfunktion, falls $SCA-
LAR 2 ist, usw.

eval(BLOCK) führt die durch BLOCK gegebenen Anweisungen aus,
bricht jedoch bei Fehlern nicht das Skript ab, sondern
stellt die Fehlerbeschreibung in der Variablen $@ be-
reit

exit($SCALAR) beendet das Skript mit dem optionalen, durch $SCA-
LAR gegebenen numerischen Fehlercode

next springt innerhalb einer Schleife (for, while, usw.)
zum nächsten Durchgang

last verlässt eine Schleife (wie break in C)
system($SCALAR) führt den durch $SCALAR gegebenen Systembefehl

aus und liefert dessen Ausgabe
time() liefert die Sekunden seit dem 1. Januar 1970 00:00

Uhr (der sogenannten Epoch)
localtime($SCALAR) liefert den übergebenen Epoch-Zeitwert als lokale

Zeit in Form eines Arrays, das Sekunde, Minute,
Stunde, Tag, Monat, Jahr, Wochentag, Jahrestag und
ein Flag für die Sommerzeit darstellt

-r $SCALAR liefert logisch wahr, falls die Datei $SCALAR lesbar
ist

-w $SCALAR liefert logisch wahr, falls die Datei $SCALAR schreib-
bar ist

-x $SCALAR liefert logisch wahr, falls die Datei $SCALAR
ausführbar ist

-e $SCALAR liefert logisch wahr, falls die Datei $SCALAR exi-
stiert

-z $SCALAR liefert logisch wahr, falls die Datei $SCALAR 0 Byte
gross ist

-s $SCALAR liefert logisch wahr, falls die Datei $SCALAR nicht 0
Byte gross ist

-d $SCALAR liefert logisch wahr, falls $SCALAR ein Verzeichnis
ist

-f $SCALAR liefert logisch wahr, falls $SCALAR eine Datei ist

50

5 PROGRAMMIERSPRACHEN 5.1 Perl

5.1.8. Module und Packages

Perlmodule stellen Funktionsbibliotheken dar. Sie werden wie Perlskripte in Textda-
teien gepspeichert, jedoch mit der Dateiendung .pm. Ein Modul enthält i.d.R. keinen
Programmcode auf der Hauptebene, sondern lediglich Funktionen und ggf. globale Va-
riablen. Der Name eines Moduls und somit der Namensraum wird über das Schlüsselwort
package festgelegt.

#!/ usr / b in / p e r l

package Fahrzeug ;

Die Shebangzeile am Anfang mag unnütz erscheinen, jedoch erkennt man so unmittelbar,
dass es sich um eine Perldatei handelt. Zudem kann man versehentlich ein Modul aufrufen
(z.B. weil man es für ein Skript hält). Bei fehlender Shebangzeile jedoch (und da es
sich um keine binäre, vom Kernel als ausführbares Programm erkannte Datei handelt),
wird die Shell (s. Kapitel 5.2) versuchen, die enthaltenen Befehle zu interpretieren, was
meistens nicht erwünscht ist und zudem zu Nebeneffekten führen kann. Wie in Java kann
eine Namensraumhierarchie aufgebaut werden, um Module namentlich zu bündeln:

#!/ usr / b in / p e r l

package Fahrzeug : : Auto ;

Module müssen als letzte Anweisung einen logisch wahren Wert liefern (z.B. ”1”), um
ihr fehlerfreies Einbinden in das aufrufende Skript zu signalisieren. Würde im Modul
ein Fehler festgestellt werden, bricht die Importfunktion ab und beendet das Skript. Ein
Modul hat daher immer den folgenden Aufbau:

#!/ usr / b in / p e r l

package Fahrzeug : : Auto ;

1 ;

Es ist möglich, in einer Moduldatei mehrere solcher Packages zu definieren. Dieses sollte
man jedoch vermeiden, da das Schlüsselwort use zum Einbinden eines Moduls nicht
den bei package angegebenen Namen anspricht, sondern den Dateipfad. Im folgenden
Beispiel wird Perl versuchen, eine Datei Auto.pm im Verzeichnis Fahrzeug einzubinden:

#!/ usr / b in / p e r l

use Fahrzeug : : Auto ;

. . .

Perl sucht per default Module in allen Verzeichnissen, die im Array @INC angegeben
sind. Hierzu zählen u.a. das aktuelle Verzeichnis und unter unixartigen Betriebssyste-
men die Verzeichnisse /usr/lib/perl und /usr/local/lib/perl. Daher muss Auto.pm
im Unterverzeichnis Fahrzeug des aktuellen Verzeichnisses liegen, oder unterhalb eines
anderen, in @INC aufgeführten Verzeichnisses. Ist dies nicht möglich, und liegt das Modul
Auto.pm z.B. im Verzeichniss /home/felix/lib, so muss dieses dem Array @INC hin-
zugefügt werden. Ein simples push @INC, "/home/felix/lib" oder auch ein unshift
@INC, "/home/felix/lib" führen nicht zum Erfolg, da zu deren Zeitpunkt das Skript
schon in Bytecode kompiliert wurde und keine fehlenden Module aufweisen darf. Daher
wird das perleigene Modul lib verwendet, dem zusätzliche, von @INC abweichende Pfade
beim Einbinden als Liste übergeben werden:

#!/ usr / b in / p e r l

51

5 PROGRAMMIERSPRACHEN 5.1 Perl

use l i b ”/home/ f e l i x / l i b ” ;
use Fahrzeug : : Auto ;

. . .

Somit kann die Datei Auto.pm im Verzeichnis /home/felix/lib/Fahrzeug gefunden und
eingebunden werden. Wegen dieser Namensabhängigkeiten zwischen Dateipfad, Modul
und Package sollte ein Modul immer nur ein Package enthalten, dessen Name gleich
dem Modelnamen ist. So sollte in der Datei bzw. im Modul Fahrzeug/Auto.pm nur
das Package Fahrzeug::Auto vorliegen. Der Zugriff auf Funktionen und Variablen in
Modulen erfolgt über den Namen ihres Packages:

use Fahrzeug : : Auto ; # Modul e inb inden

$Fahrzeug : : Auto : : meldung = ” he l l o , world” ;
&Fahrzeug : : Auto : : ausgabe () ;

5.1.9. Objektorientiertes Programmieren

Die in Kapitel 5.1.8 dargestellten Module dienen in Perl als Grundlage für objektori-
entiertes Programmieren. Jedes Package kann eine Klasse darstellen, sofern es einen
Konstruktor besitzt und seine Funktionen als Memberfunktionen programmiert sind. Im
Gegensatz zu anderen Programmiersprachen ist der Name des Konstruktors frei wählbar.
Üblich ist jedoch new:

use Fahrzeug : : Auto ;

$auto = Fahrzeug : : Auto−>new(Farbe => ” ro t ” , PS => 150) ;

Hier wird zunächst das Modul Fahrzeug::Auto bzw. die Datei Fahrzeug/Auto.pm, wel-
che in einem in @INC aufgeführten Verzeichnis liegen muss, eingebunden. Dieses Mo-
dul enthält das Package Fahrzeug::Auto, in dem wiederum die Funktion new definiert
ist. Diese Funktion dient als Konstruktor. Ihr Rückgabewert ist ein Objekt vom Typ
Fahrzeug::Auto. Intern wandelt Perl den Aufruf von new in folgende Anweisung um:

$auto = Fahrzeug : : Auto : : new(
”Fahrzeug : : Auto” ,
Farbe => ” ro t ” ,
PS => 150

) ;

Jeder Konstruktor bekommt den Klassennamen als ersten Parameter übergeben. Das
zurückgelieferte, neue Objekt ist eine Hashreferenz, die durch die Funktion bless als
eine Instanz von Fahrzeug::Auto deklariert wurde:

package Fahrzeug : : Auto ;

sub new ()
{

my $Klasse = sh i f t ;

my %Object = () ;

my $Ob j e c t r e f = bless (\%Object , $Klasse) ;

return $Ob j e c t r e f ;
}

52

5 PROGRAMMIERSPRACHEN 5.1 Perl

Der Konstruktor new im Package Fahrzeug::Auto übernimmt zunächst per Aufruf von
shift, welches ohne Parameter auf das Array @ wirkt, den Namen der Klasse. Ansch-
liessend wird ein leerer Hash namens %Object angelegt, der durch den Aufruf von bless
als Instanz von Fahrzeug::Auto markiert wird. Die Funktion bless (engl. für segnen,
man erkennt den subtilen Humor im Sprachdesign von Perl) erwartet zwei Parameter,
nämlich eine Referenz auf die zu segnende bzw. zu klassifizierende Variable und den
Namen der Klasse. Der Rückgabewert von bless und des Konstruktors ist die klassi-
fizierte Referenz. Membervariablen wie z.B. Farbe oder PS werden i.d.R. mittels eines
temporären Hashes initialisiert:

package Fahrzeug : : Auto ;

sub new ()
{

my $Klasse = sh i f t ;

my %Object = () ;

my %Param = @ ;
foreach my $Var iab le (”Farbe” , ”PS”) {

$Object{ $Var iab le } = $Param{ $Var iab le } ;
}

my $Ob j e c t r e f = bless (\%Object , $Klasse) ;

return $Ob j e c t r e f ;
}

Dies ist möglich, da das Array @ nach dem Aufruf von shift nur noch Schlüssel-/Werte-
paare wie Farbe => rot enthält. Durch die mit foreach gebildete Schleife werden nur
gewünschte Variablen in das Objekt übernommen. Memberfunktionen werden analog
zum Konstruktor über das Objekt aufgerufen und erhalten dieses als ersten Parameter:

$auto−>l a c k i e r e n (Farbe => ”blau ”) ;

Da $auto eine klassifizierte Variable ist, wandelt Perl den Aufruf um:

Fahrzeug : : Auto : : l a c k i e r e n ($auto , Farbe => ”blau ”) ;

Daher sollte die Funktion lackieren (ein typischer Setter) wie folgt aussehen:

sub l a c k i e r e n ()
{

my $Ob j e c t r e f = sh i f t ;

my %Param = @ ;
foreach my $Var iab le (”Farbe”) {

$Objec t r e f−>{$Var iab le } = $Param{ $Var iab le } ;
}

}

Der Destruktor einer Klasse muss zwingend den Namen DESTROY haben, da er vom
Garbagecollector aufgerufen wird, sobald das Objekt nicht mehr verwendet wird. Der
genaue Zeitpunkt, zu dem ein Destruktor aufgerufen wird, ist nicht vorhersagbar. Daher
sollte er keine laufzeitkritischen Aufgaben erfüllen. Sieht man von diesen Besonderheiten
ab, stellt sich ein Konstruktor wie eine normale Klassenfunktion dar, die bis auf die
Objektreferenz parameterlos aufgerufen wird:

sub DESTROY ()
{

my $Ob j e c t r e f = sh i f t ;

53

5 PROGRAMMIERSPRACHEN 5.1 Perl

aufräumen

}

Im Gegensatz zu anderen objektorientierten Sprachen kennt Perl keinen strengen Verer-
bungsmechanismus. Stattdessen teilt man dem Interpreter mit, in welchen Packages zu
suchen ist, falls eine Methode nicht im aktuellen Paket definiert ist. Hierzu hinterlegt
man im globalen Array @ISA (lies: is a ⇒ ist ein) die Namen aller Superklassen:
package Fahrzeug : : Auto ;

our @ISA = (”Fahrzeug”) ;

Ruft man nun eine nicht im Package Fahrzeug::Auto definierte Methode auf, so ver-
sucht Perl, sie im Package Fahrzeug zu finden. Natürlich kann das Array @ISA mehrere
Superklassen enthalten, wodurch man Mehrfachvererbung implementiert. Hierbei wird
der Reihe nach in jedem aufgeführten Package die gewünschte Funktion gesucht, bis
diese gefunden ist. Um auch die Membervariablen der Superklasse zu erhalten, sollte
der Konstruktor von Fahrzeug::Auto angepasst werden. Hierzu wird die Pseudoklasse
SUPER verwendet, über die der Konstruktor der Superklasse angesprochen wird:
package Fahrzeug : : Auto ;

our @ISA = (”Fahrzeug”) ;

sub new ()
{

my $Klasse = sh i f t ;

my %Param = @ ;

my $Ob j e c t r e f = SUPER−>new(%Param) ;

foreach my $Var iab le (”Farbe” , ”PS”) {
$Objec t r e f−>{$Var iab le } = $Param{ $Var iab le } ;

}

$Ob j e c t r e f = bless ($Objec t r e f , $Klasse) ;

return $Ob j e c t r e f ;
}

Dem Konstruktor von Fahrzeug werden alle Parameter übergeben, damit dieser die
Membervariablen der Instanz von Fahrzeug initialisieren kann. Der Aufruf von bless
im oben gezeigten Konstruktor von Fahrzeug::Auto ist notwendig, damit $Object ref
nicht als Typ Fahrzeug, sondern Fahrzeug::Auto klassifiziert wird.

5.1.10. Pragmatisches Perl

Mit den Modulen strict und warnings lässt sich ein sauberer Programmierstil er-
zwingen. Verwendet man warnings, so muss jeder Variablen vor ihrem ersten lesenden
Zugriff ein Wert zugewiesen sein. Ausserdem müssen interne Perlfunktionen wie z.B.
time() oder split() ihre Rückgabewerte an eine Variable liefern. So beinhaltet folgen-
des Beispiel gleich drei Fehler:
#!/ usr / b in / p e r l

use warnings ;

54

5 PROGRAMMIERSPRACHEN 5.1 Perl

localtime ($ j e t z t) ;

Erstens wird localtime() ohne Rückgabe an eine Variable verwendet. Zweitens wurde
$jetzt kein Wert zugewiesen. Drittens wird $jetzt nur ein einziges Mal verwendet.
Die durch das Modul warnings erkannten Fehler produzieren nur Warnungen auf der
Standardfehlerausgabe. Verwendet man ein derart fehlerhaftes Perlskript jedoch als CGI-
Programm oder als per mod perl aufgerufenes Modul in einem Webserver, so werden
diese Warnungen an den Browser des Besuchers geschickt und können u.U. die Ausgabe
der Webseite beeinflussen. Setzt man hingegen strict ein, so führen die durch dieses
Modul erkannten Fehler zum Abbruch des Skriptes. Hierzu zählen globale Variablen,
die nicht per my oder our deklariert wurden, und die Zuweisung von Zeichenketten, die
weder in Anführungsstrichen notiert sind noch Funktionsnamen darstellen:
#!/ usr / b in / p e r l

use s t r i c t ;

sub Hel loUniver se ()
{

return ” he l l o , un ive r s e ” ;
}

$ j e t z t = time () ;

my $var1 = HelloWorld ;
my $var2 = Hel loUniver se ;

Das gezeigte Skript erzeugt zwei Fehler: Zum einen wird der Scalar $jetzt nicht dekla-
riert. Zum anderen stellt HelloWorld keinen Funktionsnamen dar. Die Variable $var2
hingegen enthält die Zeichenkette hello, universe, da HelloUniverse eine gültige
Funktion darstellt und eben jenen String liefert. Für Perlskripte im produktiven Einsatz
sollten immer beide Module strict und warnings eingebunden werden, um unsauberen
Programmierstil und somit ”versteckte”Fehler von vornherein zu unterbinden.

5.1.11. Plain Old Documentation

Mit dem Plain Old Documentation (POD)-Format werden speziell gekennzeichnete Ab-
schnitte in Perl-Skripten und -Modulen als Dokumentationstext interpretiert. Mit ex-
ternen Programmen wie pod2html oder pod2text werden aus jenen Abschnitten Quell-
codedokumentationen als HTML-Seiten, Textdateien, o.ä. ausgegeben15. POD-Schlüs-
selwörter müssen mit einem Gleichheitszeichen und am Anfang einer Zeile beginnen.
Zum Abschluss einer POD-Anweisung muss eine Leerzeile folgen. Ein Dokumentations-
abschnitt wird explizit mit =pod oder implizit mit jedem POD-Schlüsselwort eingeleitet.
Zum Verlassen eines POD-Blocks muss =cut verwendet werden. Mit =head1 bis =head4
stehen unterschiedlich markante Formatierungsanweisungen für Kopfzeilen bereit. Ein
einfaches Beispiel sieht wie folgt aus:
#!/ usr / b in / p e r l

=head1 he l l owor ld . p l

Die se s Programm g ib t ” he l l o , world” aus .

=cut

print ” he l l o , world\n” ;

15Vgl. ähnliche Systeme wie z.B. javadoc

55

5 PROGRAMMIERSPRACHEN 5.1 Perl

Aufzählungen werden per =over und =back begonnen bzw. beendet. Die einzelnen Punk-
te einer Liste werden mit =item angeführt. Zusätzlich stehen folgende Formatierungsan-
weisungen zur Verfügung:

I<TEXT> druckt TEXT kursiv

B<TEXT> druckt TEXT fett

C<TEXT> druckt TEXT in einer Proportionalschriftart

S<TEXT> verhindet, dass TEXT umgebrochen wird

F<DATEINAME> zur einheitlichen Darstellung von Dateinamen

L<LINK> falls LINK eine URL darstellt wie z.B. http://www.fh-bielefeld.de/, wird
ein entsprechender externer Link erzeugt; ansonsten wird ein Link zu der angege-
benen lokalen Unix-Manpage erzeugt

Mit =begin und =end können Abschnitte definitert werden, die nur eine Klasse von
POD-Parsern auswertet. So wird folgendes Beispiel nur von pod2text dargestellt:

=begin text

Dies e r s c h e i n t nur in e i n e r Textdate i .

=end text

Abbildung 9 zeigt die per pod2html erzeugte HTML-Dokumentation in einem Webbrow-
ser, die aus folgendem Perl-Skript erzeugt wurde:

#!/ usr / b in / p e r l

=head1 he l l owor ld . p l

=head2 Aufruf

F<./ he l l owor ld . pl>

=head2 Eingabe

I<keine>

=head2 Ausgabe

I<he l l o , world>

=head2 Bugs

=over

=item Per l wird ben ö t i g t .

=item Nicht l a u f f ä h i g unter DOS.

=back

=head2 L i t e r a tu r

L<http :// de . w ik iped ia . org / wik i /Hallo−Welt−Programm>

=begin text

56

5 PROGRAMMIERSPRACHEN 5.2 Shellscripting

Benutze pod2text , damit d i e s e r Abschnitt in der Dokumentation e r s c h e i n t .

=end text

=cut

print ” he l l o , world\n” ;

Abbildung 9: Per pod2html erzeugte HTML-Dokumentation des Quellcodes

5.2. Shellscripting

Die Shell ist nicht nur die primäre Schnittstelle zwischen Mensch und (unixartigem)
Betriebssystem, sondern auch eine einfache Programmiersprache, die je nach Shell mehr
oder weniger weit über herkömmliche Stapelverarbeitung hinaus geht. Auf einem
FreeBSD-System sind standardmässig die tcsh, eine leicht an die Syntax von C angelehn-
te Shell, und die sh installiert. Letztere wird als Interpreter in Systemskripten verwendet,
die beim Starten und Stoppen des Betriebssystems wichtige Aufgaben übernehmen, z.B.
das Konfigurieren von Netzwerkschnittstellen oder das kontrollierte Herunterfahren von
Serverprozessen. Shellskripte und in der Shell (als interaktives Programm) eingegebene
Befehle sind äquivalent. Beide stellen Befehlsfolgen dar, die interpretiert und ggf. aus-
geführt werden, z.B. wenn es sich um den Aufruf eines (externen) Programmes handelt.
Da Perl einige Konzepte aus der Shellprogrammierung übernommen hat, erscheinen di-

57

5 PROGRAMMIERSPRACHEN 5.2 Shellscripting

verse Elemente vertraut. Wie jedes andere nicht-binäre Programm unter Unix sollte auch
ein Shellskript mit einer Shebang-Zeile eingeleitet werden:

#!/ bin / sh

Dies i s t e in Kommentar

Kommentare werden wie gezeigt per # eingeleitet. Analog zu Perl existiert keine Haupt-
routine. Ansonsten müsste man diese auch im interaktiven Betrieb definieren. Befehle
werden entweder per Semikolon oder per Zeilenvorschub voneinander getrennt. Die Shell
/bin/sh unterstützt lediglich einen einfachen Datentyp, der Zeichenketten oder nume-
rische Werte aufnehmen kann (vgl. Scalare in Perl). Sie müssen nicht deklariert werden
und sind ab ihrer ersten Verwendung global definiert. Ausnahme bilden per local mar-
kierte Bezeichner innerhalb von Funktionen. Variablen, denen ein Wert zugewiesen wird,
werden ohne Prefix notiert. Soll der Wert abgerufen werden, so muss ein Dollarzeichen
vorangestellt werden:

#!/ bin / sh

meldung=” he l l o , world”
echo $meldung

Zusätzlich kann der Variablenname in geschweifte Klammern gefasst werden. Dies ist
sinnvoll, wenn Zeichen folgen, die auch als Teil des Variablennamens interpretiert werden
könnten:

#!/ bin / sh

meldung=”This i s j u s t a t e s t ”
echo ${meldung} s c r i p t

Innerhalb einfacher Anführungsstriche findet keine Variablenexpansion statt. So gibt
folgendes einfach nur $meldung aus (statt hello, world):

#!/ bin / sh

meldung=” he l l o , world”
echo ’ $meldung ’

Der Backslash dient zum Maskieren von Metazeichen:

#!/ bin / sh

meldung=” Per l i s \” funny\””
echo $meldung

Dieses Beispiel gibt wie erwartet Perl is "funny" aus. Vorbelegte Variablen sind $0,
$1, $2, usw. In $0 ist der Name des Skriptes hinterlegt, in den Variablen ab $1 etwaige
Kommandozeilenparameter bzw. innerhalb einer Funktion die ihr übergebenen Werte.
Per Aufruf von unset meldung (ohne Dollarzeichen vor dem Namen der Variablen) wird
die Variable in den nicht initialisierten Zustand zurückversetzt. Zusätzlich existieren die
in Tabelle 6 aufgeführten Arten von Wertezuweisungen.

58

5 PROGRAMMIERSPRACHEN 5.2 Shellscripting

Tabelle 6: Bedingte Wertezuweisungen in der Shellprogrammierung

Zuweisung Beschreibung
ziel=$quelle:-$default Weist der Variablen $ziel den Wert von $quelle zu,

falls quelle nicht leer ist und nicht die leere Zeichen-
kette darstellt; sonst wird der Wert von $default
zugewiesen

ziel=$quelle:=$default Weist der Variablen $ziel den Wert von $quelle zu,
falls quelle nicht leer ist und nicht die leere Zeichen-
kette darstellt; sonst wird der Wert von $default
zunächst $quelle zugewiesen und dieser schliesslich
an $ziel geliefert

ziel=$quelle:?$fehler Weist der Variablen $ziel den Wert von $quelle
zu, falls quelle nicht leer ist und nicht die leere Zei-
chenkette darstellt; sonst bricht die Ausführung des
Skriptes ab, optional mit dem in $fehler hinterleg-
ten Text

ziel=$quelle:+$default Gegenteil zu ziel=$quelle:-$default: weist der
Variablen $ziel den Wert von $quelle zu, falls
quelle leer ist oder die leere Zeichenkette darstellt;
ansonsten (wenn $quelle also einen String länger 0
Buchstaben enthält) wird der Wert von $default zu-
gewiesen

Die Syntax von Kontrollstrukturen ist entfernt an Pascal angelehnt:

#!/ bin / sh

name=”Hans”

i f [$name = ”Peter ”] ; then
echo ”Hal lo Peter ”

e l i f [$name = ”Hans”
echo ”Hal lo Hans”

else
echo ”Hal lo Unbekannter”

f i

Dieses Konstrukt prüft, ob der Name Peter oder Hans lautet und gibt bei keiner Über-
einstimmung Hallo Unbekannter aus. Wesentlich eleganter ist eine Fallunterscheidung.
Auch hierbei wird das einleitende Schlüsselwort case in umgekehrter Schreibweise (esac)
als Abschluss des Befehls erwartet:

#!/ bin / sh

name=”Hans”

case $name in
Peter)

echo ”Hal lo Peter ”
; ;

Hans)
echo ”Hal lo Hans”
; ;

∗)
echo ”Hal lo Unbekannter”

59

5 PROGRAMMIERSPRACHEN 5.2 Shellscripting

; ;
esac

Schleifen werden per while oder for gebildet. Letztere ähnelt jedoch einer mit foreach
programmierten Schleife in Perl:

#!/ bin / sh

for i in ”Hans” ”Peter ” ” Fe l i x ” ; do
echo ”Hal lo $ i ”

done

Der Befehl for iteriert über jedes Element der Liste, auf die er angewendet wird, so dass
obiges Beispiel der Reihe nach Hallo Hans, Hallo Peter und Hallo Felix ausgibt. Das
folgende Beispiel gibt die Zahlen von 0 bis 9 aus. Der hierzu notwendige arithmetische
Ausdruck wird per zweifacher runder Klammern gebildet:

#!/ bin / sh

i=0

while [$ i − l t 10] ; do
echo ” $ i ”
i=$ ((i +1))

done

Die Befehle if und while werten generell die Rückgabe eines Programmes aus. Been-
det sich ein Programm mit dem Status 0, wird dies als logisch wahr gewertet, jeder
andere Rückgabewert als falsch. Tatsächlich war der Operator [in alten Unixversio-
nen ein externes Programm. Die Shell in aktuellen FreeBSD-Versionen verfügt hingegen
über diesen Operator und muss für Vergleiche wie oben gezeigt kein externes Programm
aufrufen. Aus Kompatibilitätsgründen liegt im Verzeichnis /bin ein Programm namens
[, welches identisch mit dem ebenfalls dort befindlichen Programm test ist. Die von
diesen Programmen bzw. Operatoren angebotenen Tests zeigt Tabelle 7. Sie ähneln den
Funktionen -r bis -f in Perl (s. Tabelle 5).

Tabelle 7: Ausgewählte Tests des Shelloperators [bzw. des Programmes test

Test Beschreibung
-d VERZEICHNIS VERZEICHNIS existiert und ist ein Verzeichnis
-e DATEI DATEI existiert
-f DATEI DATEI existiert und ist eine Datei
-r DATEI DATEI existiert und ist lesbar
-s DATEI DATEI existiert und ist grösser als 0 Byte
-w DATEI DATEI existiert und ist schreibar
-x DATEI DATEI existiert und ist ausführbar
-n STRING die Zeichenkette in STRING hat nicht die Länge 0
-z STRING die Zeichenkette in STRING hat die Länge 0
STRING1 = STRING2 die Zeichenketten STRING1 und STRING2 sind

identisch
STRING1 != STRING2 die Zeichenketten STRING1 und STRING2 sind

nicht identisch
INTEGER1 -eq INTEGER2 die Zahlen INTEGER1 und INTEGER2 sind iden-

tisch

60

5 PROGRAMMIERSPRACHEN 5.2 Shellscripting

Tabelle 7: Ausgewählte Tests des Shelloperators [bzw. des Programmes test (Forts.)

Test Beschreibung
INTEGER1 -ne INTEGER2 die Zahlen INTEGER1 und INTEGER2 sind nicht

identisch
INTEGER1 -gt INTEGER2 die Zahl INTEGER1 ist grösser INTEGER2
INTEGER1 -ge INTEGER2 die Zahl INTEGER1 ist grösser oder gleich INTE-

GER2
INTEGER1 -lt INTEGER2 die Zahl INTEGER1 ist kleiner INTEGER2
INTEGER1 -le INTEGER2 die Zahl INTEGER1 ist kleiner oder gleich INTE-

GER2
AUSDRUCK1 -a AUSDRUCK2 beide Ausdrücke sind wahr, z.B. [$vorname =

"Hans" -a $nachname = "Meier"]
AUSDRUCK1 -o AUSDRUCK2 einer der Ausdrücke ist wahr, z.B. [$vorname =

"Hans" -o $vorname = "Peter"]

Die Funktion eval fungiert als Interpreter im Interpreter. Sie wertet den ihr über-
gebenen String als Shellskript aus. Dies wird häufig zur indirekten Adressierung und
aufgrund fehlender komplexer Datenstrukturen verwendet:

#!/ bin / sh

$benutzer=”1”

$User 0 Name=”Hans Meier ”
$User 1 Name=”Peter Maier”

eval ”ausgabe=\$User $ {benutzer } Name”

echo $ausgabe

Dieses Skript gibt Peter Maier aus. Beim Aufruf von eval wird die Variable $benutzer
expandiert, so dass eval die Zeichenkette "ausgabe=$User 1 Name" erhält. Das Dol-
larzeichen nach dem Gleichheitszeichen wird nicht als Variablenprefix gewertet, da es
maskiert ist. Die Variable $User 1 Name wurde zuvor mit dem Wert Peter Maier be-
legt, so dass eval diesen String in ausgabe kopiert. Würde man die Variable $benutzer
mit 0 initialisieren, so gäbe das obige Beispiel den Namen Hans Meier aus, bei allen
anderen Werte eine leere Zeichenkette. Funktionen werden relativ einfach definiert und
aufgerufen:

#!/ bin / sh

ausgabe ()
{

echo ” he l l o , world”
}

ausgabe

Parameter werden in den Variablen $1, $2, usw. übergeben:

#!/ bin / sh

print name ()
{

echo ”Vorname : $1”
echo ”Nachname : $2”

61

5 PROGRAMMIERSPRACHEN 5.2 Shellscripting

return 0
}

print name ”Hans” ”Meier ”

Rückgabewerte von Funktionen sind auf einen numerischen Statuscode von 0 bis 255
beschränkt, der in der aufrufenden Funktion in der Variablen $? abgefragt werden kann.
Ein Shellskript kann weitere Shellskripte einbinden und auf deren Variablen und Funk-
tionen zugreifen:

#!/ bin / sh

. / usr / l o c a l / e t c / f unc t i on s . sh

Das Beispiel bindet (engl. to source) die Datei /usr/local/etc/functions.sh lexika-
lisch an der angegebenen Stelle ein. Etwaiger Code auf der Hauptebene der eingebunde-
nen Datei wird unmittelbar ausgeführt.

62

6 AUSZEICHNUNGSSPRACHEN

6. Auszeichnungssprachen

6.1. XML

Die Extensible Markup Language (XML) ist eine Metasprache. Mit ihrer Hilfe können
eigene Formate zum Transport von Daten definiert werden. XML verhält sich zu einem
selbst definierten Transportformat nahezu wie die Backus-Naur-Form (BNF) zu einer in
BNF spezifizierten Programmiersprache. In der Praxis wird der Begriff XML-Dokument
verwendet, wenn man Daten diskutiert, die in einem XML-Format transportiert werden.
Mit XML können ausschliesslich hierarchische Formate definiert werden. Sie müssen
genau ein Wurzelelement (root node) besitzen, welches beliebig viele und beliebig tief
verschachtelte Kindelemente beinhalten darf. Elemente bestehen aus einem öffnenden
und einem schliessenden Tag, die Daten und/oder weitere (Kind-)Elemente umfassen.
Tags werden in spitze Klammern gefasst:
<buch>

Das gezeigte Tag öffnet das Element buch. Das zugehörige schliessende Tag wird per
Schrägstrich gebildet:
</buch>

Enthält ein Element keine Kindelemente, kann die Folge von öffnendem und schliessen-
dem Tag wie folgt abgekürzt werden:
<buch/>

Elementnamen sind frei wählbar, müssen jedoch mit einem Buchstaben, Unterstrich
oder Doppelpunkt beginnen und mit alphanumerischen Zeichen, Punkt, Bindestrich,
Unterstrich oder Doppelpunkt fortgesetzt werden. Zudem dürfen Elementnamen nicht
mit XML in jedweder Gross-/Kleinschreibung anfangen. Tags müssen in der richtigen,
LIFO-artigen Reihenfolge geschlossen werden. Folgendes Beispiel ist ungültig:
<buch>
<autor>
</buch>
</ autor>

XML-Dokumente müssen mit einer sogenannten XML-Deklaration eingeleitet werden:
<?xml version=” 1 .0 ”?>

Allgemein stellt die XML-Deklaration eine sogenannte Processing Instruction (PI) dar.
Sie werden per <? eingeleitet und per ?> abgeschlossen. Auf diese Art lassen sich dem
XML-Parser Anweisungen übergeben. Entspricht ein XML-Dokument den bisher erläu-
terten Regel, ist es wohlgeformt. Attribute sind ergänzende Angaben zu Elementen, die
im öffnenden Tag angegeben werden. Für ihre Bezeichnung gelten die gleichen Regeln
wie für Elementnamen:
<?xml version=” 1 .0 ”?>
<buecher>

<buch p r e i s=”74 ,95 EUR”>
< t i t e l>I n t e rn e t Routing Arch i tekturen</ t i t e l>

</buch>
</buecher>

Einrückungen am Zeilenanfang sind primär kosmetischer Natur. Zu beachten ist aller-
dings, dass sie beim Parsen eines XML-Dokumentes nicht zwangsweise gelöscht werden.
Es ist dem XML-Parser überlassen, z.B. den Zeilenvorschub und jegliche Leerzeichen zwi-
schen </titel> und </buch> zu ignorieren. Ein Programmierer sollte dies beim Schrei-
ben einer XML verarbeitenden Anwendung auf jeden Fall berücksichtigen. Daher ist es

63

6 AUSZEICHNUNGSSPRACHEN 6.1 XML

auch ratsam, Elementwerte wie den gezeigten Buchtitel ohne voran- oder nachgestellte
Whitespaces zu notieren. Attribut- und Elementwerte dürfen beliebige Zeichen enthalten
mit folgenden Ausnahmen:

& Das kaufmännische Und-Zeichen muss durch & ersetzt werden

< Die öffnende spitze Klammer muss durch < ersetzt werden.

Ferner müssen in Attributwerten, die per doppelter Anführungsstriche umfasst sind,
eben doppelte Anführungsstriche durch > ersetzt werden. Gleiches gilt für Attribut-
werte in einfachen Anführungsstrichen. Hier müssen einfache Anführungsstriche durch
' ersetzt werden. Diese vordefinierten Ersatzzeichen werden Entities genannt. Ge-
nerell kann man jedes Zeichen durch seinen entsprechenden Unicode- oder ASCII-Wert
ersetzen, entweder in dezimaler oder hexadezimaler Darstellung. Dem grossen A ist der
ASCII-Code 65 zugeordnet. Es kann daher durch A oder hexadezimal durch A
ersetzt werden. Kommentare werden durch <!-- begonnen und per --> geschlossen. In-
nerhalb von Attributwerten werden sie nicht erkannt, innerhalb eines Tags führen sie zu
fehlerhaftem XML.

6.1.1. DTD

Eine Dokumenttypdefinition (Document Type Definition (DTD)) beschreibt Sprachum-
fang und Struktur eines XML-Formats. Ein XML-Dokument kann gegen seine DTD
geprüft werden, und wird – falls es der DTD genügt – valide genannt. Eine DTD ist
eine Textdatei, deren Aufbau an die Erweiterte Backus-Naur-Form (EBNF) erinnert.
Sie kann entweder in ein XML-Dokument eingebettet werden, oder als externe Datei
referenziert werden. In beiden Fällen muss die DTD direkt nach der XML-Deklaration
eingebunden werden:

<?xml version=” 1 .0 ”?>
< !DOCTYPE buecher SYSTEM ” h t tp : // bib . fh−b i e l e f e l d . de/dtds /buecher . dtd”>
<buecher>

<buch p r e i s=”74 ,95 EUR”>
< t i t e l>I n t e rn e t Routing Arch i tekturen</ t i t e l>

</buch>
</buecher>

Das Wurzelelement buecher, alle untergeordneten Elemente und somit – weil ein wohl-
geformtes XML-Dokument genau ein Wurzelelement aufweisen muss – das gesamte
XML-Dokument müssen der DTD genügen, die über den Uniform Resource Identi-
fier (URI) http://bib.fh-bielefeld.de/dtds/buecher.dtd referenziert wird. Ob-
wohl dieser URI eine gültige URL darstellt, muss es sich nicht um eine gültige (Internet-
)Adresse handeln. Die Menge aller URLs stellt eine Untermenge von URIs dar. Von
einer URI fordert man lediglich, dass sie einen eindeutigen Bezeichner darstellt. Eine
URL hingegen muss Protokoll und Pfad zu einer Resource wie z.B. zu einem Doku-
ment aufweisen. In der Praxis hat es sich jedoch durchgesetzt, die URI zu einer DTD
als konkrete (und öffentlich abrufbare) URL zu notieren. So kann ein Parser jederzeit
die XML-Dokumente validieren, welche auf diese DTD verweisen. Eine Document Type
Definition selbst ist kein XML-Dokument:

< !ELEMENT buecher (buch ∗)>
< !ELEMENT buch (t i t e l)>
< !ELEMENT t i t e l (#PCDATA)>

64

6 AUSZEICHNUNGSSPRACHEN 6.1 XML

Das (Wurzel-)Element buecher kann eine beliebige Anzahl von Elementen des Typs
buch enthalten. Neben dem Sternchen * gibt es wie bei regulären Ausdrücken als Wie-
derholungsoperatoren das Fragezeichen ?, welches anzeigt, dass das vorangehende Ele-
ment nicht oder nur einmal vorkommen darf, und das Pluszeichen +, welches ein- oder
mehrmaliges Vorkommen ausdrückt. Das Element buch muss genau ein Element titel
enthalten, welches nur Zeichen(-ketten) (parsed character data) enthalten darf. Der Typ
#PCDATA ist vordefiniert. Mit Hilfe des senkrechten Striches | können in einer DTD
Variationen ausgedrückt werden:

< !ELEMENT buecher (buch ∗)>
< !ELEMENT buch (t i t e l , (autor | autoren))>
< !ELEMENT t i t e l (#PCDATA)>

Ein Buch muss somit einen Titel und ein Element autor oder autoren enthalten.
Natürlich müssen auch diese definiert werden:

< !ELEMENT autor (#PCDATA)>
< !ELEMENT autoren (autor+)>

Das Element autoren ist somit eine Auflistung von einem oder mehreren Autoren, die
wiederum Zeichenketten sind. Attribute wie z.B. preis in den obigen Beispieldokumen-
ten werden in einer DTD separat aufgeführt:

< !ATTLIST buch p r e i s CDATA #REQUIRED>

Die Attributliste sagt aus, dass das Element buch genau ein Attribut preis aufweisen
muss (#REQUIRED). Die Attributwerte müssen Zeichenketten (character data) sein. Neben
#REQUIRED, welches anzeigt, dass ein Attribut aufgeführt werden muss, sind folgende
Angaben möglich:

#IMPLIED Das Attribut ist optional

#FIXED <Defaultwert> Das Attribut muss bei jeder Verwendung des Elementes ange-
geben werden und muss den vorgegebenen Defaultwert haben

<Defaultwert> Das Attribut ist optional. Fehlt es, wird es implizit auf den angegebenen
Defaultwert gesetzt.

Als Attributtypen können die folgenden verwendet werden:

CDATA Der Attributwert muss eine beliebige Zeichenkette sein

ID Der Attributwert muss eine innerhalb des Dokumentes eindeutige Zeichenkette sein

IDREF Der Attributwert muss gleich dem Wert eines Attributes vom Typ ID sein. Es ist
nicht möglich, den Namen des so referenzierten Attributes oder Elementes anzu-
geben. Die korrekte Verknüpfung muss also die Anwendung selbst herstellen

<Liste von selbst definierten Bezeichnern> Der Attributwert muss ein Bezeich-
ner aus der Liste sein (vgl. enum in C).

Die Attributliste für das Element buch kann also z.B. wie folgt erweitert werden:

< !ATTLIST buch
p r e i s CDATA #REQUIRED
i sbn ID #REQUIRED
hardcover (yes | no) #REQUIRED
no t i z CDATA #IMPLIED
beschaed ig t CDATA ” nein ”

>

65

6 AUSZEICHNUNGSSPRACHEN 6.1 XML

Ein im Sinne dieser DTD valides XML-Dokument wäre z.B. das folgende:

<?xml version=” 1 .0 ”?>
< !DOCTYPE buecher SYSTEM ” h t tp : // bib . fh−b i e l e f e l d . de/dtds /buecher . dtd”>
<buecher>

<buch p r e i s=”74 ,95 EUR” isbn=”3−8272−5938−X” hardcover=”yes ”>
< t i t e l>I n t e rn e t Routing Arch i tekturen</ t i t e l>
<autoren>

<autor>Bassam Halabi</ autor>
<autor>Danny McPherson</ autor>

</ autoren>
</buch>

</buecher>

Die DTD kann im XML-Dokument transportiert werden, anstatt per URI referenziert
zu werden:

<?xml version=” 1 .0 ”?>
< !DOCTYPE buecher [

<!ELEMENT buecher (buch ∗)>
< !ELEMENT buch (t i t e l , (autor | autoren))>
< !ELEMENT t i t e l (#PCDATA)>
< !ELEMENT autor (#PCDATA)>
< !ELEMENT autoren (autor+)>
< !ATTLIST buch

p r e i s CDATA #REQUIRED
i sbn ID #REQUIRED
hardcover (yes | no) #REQUIRED
no t i z CDATA #IMPLIED
beschaed ig t CDATA ” nein ”

>
]>
<buecher>
< !−− . . . Buecher . . . −−>
</buecher>

6.1.2. Namensräume

Obwohl mit den oben erläuterten Dokumenttypdefinitionen rigide XML-Formate fest-
gelegt werden können, so dass sie z.B. Datenbanktabellen mit ihren Constraints na-
hezu vollständig abbilden könnten, werden sie in der Praxis selten angewendet. Zum
einen stellt die Syntax einer DTD kein valides XML dar. Zum anderen kann ein XML-
Dokument nur genau eine DTD referenzieren. So ist es z.B. nicht möglich, eine
person.dtd zu definieren, die Angaben zu einer Person wie Name, Vorname, Email-
adresse, etc. verlangt, und diese DTD bzw. das Element person in der o.g. Buchliste
als Autor zu verwenden. Daher hat das World Wide Web Consortium (W3C)16, das
federführend XML und dessen Derivate entwickelt, sogenannte Namensräume (name-
spaces) eingeführt. Ein Namensraum wird im XML-Dokument als Prefix vor Elementna-
men verwendet. Damit Namensräume eindeutig sind, werden sie über einen eindeutigen
URI referenziert:

<?xml version=” 1 .0 ”?>
< f h b i e l e f e l d : b u e c h e r

xm l n s : f h b i e l e f e l d=” ht tp : // bib . fh−b i e l e f e l d . de/nspace /buecher ”>
< !−− . . . Buecher . . . −−>
</ f h b i e l e f e l d : b u e c h e r>

16http://www.w3.org

66

http://www.w3.org

6 AUSZEICHNUNGSSPRACHEN 6.1 XML

Das (Wurzel-)Element buecher entstammt dem Namespace fhbielefeld. Dieser ist
eindeutig dem URI http://bib.fh-bielefeld.de/nspace/buecher zugeordnet. Es ist
dabei dem XML-Parser überlassen, ob und wie er jenen Namensraum behandelt. Im
Gegensatz zu DTDs verbirgt sich dahinter keine formale Vorschrift zum Validieren des
XML-Dokumentes. Das oben skizzierte Beispiel, in dem das Format der Autorendaten
aus einer weiteren DTD importiert werden sollte, lässt sich mit Namensräumen lösen:
<?xml version=” 1 .0 ”?>
< f h b i e l e f e l d : b u e c h e r

xm l n s : f h b i e l e f e l d=” ht tp : // bib . fh−b i e l e f e l d . de/nspace /buecher ”
xmlns :person=” ht tp : // bib . fh−b i e l e f e l d . de/nspace / person ”>
< f h b i e l e f e l d : b u c h>

< f h b i e l e f e l d : t i t e l>Modern Operating Systems</ f h b i e l e f e l d : t i t e l>
< f h b i e l e f e l d : a u t o r>

<person:name>Tanenbaum</person:name>
<person:vorname>Andrew</person:vorname>
<p e r s o n : t i t e l>Pro f e s s o r</ p e r s o n : t i t e l>

</ f h b i e l e f e l d : a u t o r>
</ f h b i e l e f e l d : b u c h>

</ f h b i e l e f e l d : b u e c h e r>

Zum einen kann ein Elementname scheinbar mehrfach verwendet werden. Zu beachten
ist in obigem Beispiel jedoch, dass der Buchtitel zum Namensraum fhbielefeld gehört,
der (akademische) Titel des Autors jedoch zu person. Zum anderen muss der Namespace
fhbielefeld nicht die Elemente von person implementieren. Letzterer wird dadurch in
unterschiedlichen XML-Formaten verwendbar. Definiert man einen Default-Namespace,
so muss ein Namensraum nur bei Elementen angegeben werden, die nicht zum Default-
Namespace gehören. Er wird durch Weglassen des Namespace-Namens zwischen xmlns
und dem Namespace-URI definiert. Folgendes Dokument ist daher zu obigem äquivalent:
<?xml version=” 1 .0 ”?>
<buecher xmlns=” ht tp : // bib . fh−b i e l e f e l d . de/nspace /buecher ”

xmlns :person=” ht tp : // bib . fh−b i e l e f e l d . de/nspace /buecher ”>
<buch>

< t i t e l>Modern Operating Systems</ t i t e l>
<autor>

<person:name>Tanenbaum</person:name>
<person:vorname>Andrew</person:vorname>
<p e r s o n : t i t e l>Pro f e s s o r</ p e r s o n : t i t e l>

</ autor>
</buch>

</buecher>

6.1.3. XML Schema

Das W3C hat keine Möglichkeit vorgesehen, Namensräume an eine DTD zu binden.
Statt dessen wurde XML Schema entwickelt, mit dessen Hilfe Formatvorschriften in
einem XML-Format definiert werden können. XML Schema ist selbst über den Name-
space http://www.w3.org/2001/XMLSchema definiert. Ein gültiges XML Schema hat
folgenden Aufbau:
<?xml version=” 1 .0 ”?>
<xs:schema xmlns :xs=” ht tp : //www.w3 . org /2001/XMLSchema”

targetNamespace=” ht tp : // bib . fh−b i e l e f e l d /nspace /buecher ”>
</xs:schema>

Das Attribut targetNamespace des Wurzelelementes schema gibt den Namensraum an,
für den dieses XML Schema definiert wird. Folgendes Schema beschreibt ein triviales
XML-Format, dessen Wurzelelement buchtitel nur eine Zeichenkette enthalten darf:

67

6 AUSZEICHNUNGSSPRACHEN 6.1 XML

<?xml version=” 1 .0 ”?>
<xs:schema xmlns :xs=” ht tp : //www.w3 . org /2001/XMLSchema”

targetNamespace=” ht tp : // bib . fh−b i e l e f e l d /nspace /buecher ”>
<xs : e l ement name=” buch t i t e l ” type=” x s : s t r i n g ”/>

</xs:schema>

Neben string kennt XML Schema u.a. folgende simple Datentypen:

boolean Mögliche Werte sind true und 1 für logisch wahr, false und 0 für logisch
falsch

string beliebige Zeichenkette

integer beliebiger Ganzzahlwert

dateTime Datum und Zeit im Format YYYYMMDDTHH:MM:SS mit

YYYY Jahr
MM Monat
DD Tag
T Trennzeichen zwischen Datum und Zeit
HH Stunde
MM Minute
SS Sekunde

Alle vordefinierten Datentypen findet man auf den Webseiten des W3C17. Elementen
kann ein Standardwert zugewiesen werden, so dass sie im XML-Dokument nicht explizit
aufgeführt werden müssen:

<xs : e l ement name=” buch t i t e l ” type=” x s : s t r i n g ”
default=”Ein t o l l e s Buch” />

Ebenso kann einem Element ein konstanter Wert zugeordnet werden:
<xs : e l ement name=” buch t i t e l ” type=” x s : s t r i n g ”
f i x ed=” Feste r Bucht i t e l ” />

Elemente, die als Typ keinen simplen Datentyp wie string oder integer aufweist,
werden komplexe Elemente genannt. Hierzu zählen insbesondere Elemente, die unterge-
ordnete Kindelemente enthalten:
<xs:schema xmlns :xs=” ht tp : //www.w3 . org /2001/XMLSchema”

targetNamespace=” ht tp : // bib . fh−b i e l e f e l d /nspace /buecher ”>
<xs : e l ement name=”buch”>

<xs:complexType>
<x s : a l l>

<xs : e l ement name=” t i t e l ” type=” x s : s t r i n g ” />
<xs : e l ement name=”autor ” type=” x s : s t r i n g ” />

</ x s : a l l>
</xs:complexType>

</ xs : e l ement>
</xs:schema>

Per complexType wird ein komplexer Datentyp definiert. Das Element xs:all ist ein
sogenannter Indikator. Er gibt an, wie oft und in welcher Reihenfolge die Kindelemente
aufgeführt werden müssen. Es gibt drei Variationen:

all Alle untergeordneten Elemente dürfen im XML-Dokument maximal einmal vorkom-
men, und zwar in der vom XML Schema vorgegebenen Reihenfolge

17http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/#built-in-datatypes

68

http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/#built-in-datatypes

6 AUSZEICHNUNGSSPRACHEN 6.1 XML

choice Jedes untergeordnete Element kann beliebig oft vorkommen

sequence Alle untergeordneten Elemente müssen im XML-Dokument mindestens ein-
mal vorkommen, und zwar in der vom XML Schema vorgegebenen Reihenfolge.

Zusätzlich existieren Indikatoren, die als Attribut einer Elementdefinition verwendet
werden können.
<xs:schema xmlns :xs=” ht tp : //www.w3 . org /2001/XMLSchema”

targetNamespace=” ht tp : // bib . fh−b i e l e f e l d /nspace /buecher ”>
<xs : e l ement name=”buch”>

<xs:complexType>
<xs : s equence>

<xs : e l ement name=” t i t e l ” type=” x s : s t r i n g ”
minOccurs=”1” maxOccurs=”1”/>

<xs : e l ement name=”autor ” type=” x s : s t r i n g ”
minOccurs=”1” maxOccurs=”unbounded”/>

</ xs : s equence>
</xs:complexType>

</ xs : e l ement>
</xs:schema>

Somit muss das Element titel genau einmal vorkommen, autor hingegen mindestens
einmal. Das vollständige XML Schema für eine Buchliste sieht wie folgt aus:
<xs:schema xmlns :xs=” ht tp : //www.w3 . org /2001/XMLSchema”

targetNamespace=” ht tp : // bib . fh−b i e l e f e l d /nspace /buecher ”>
<xs : e l ement name=”buecher ”>

<xs:complexType>
<xs : s equence>

<xs : e l ement name=”buch”
minOccurs=”1” maxOccurs=”unbounded”/>
<xs:complexType>

<xs : s equence>
<xs : e l ement name=” t i t e l ” type=” x s : s t r i n g ”

minOccurs=”1” maxOccurs=”1”/>
<xs : e l ement name=”autor ” type=” x s : s t r i n g ”

minOccurs=”1” maxOccurs=”unbounded”/>
</ xs : s equence>

</xs:complexType>
</ xs : e l ement>

</ xs : s equence>
</xs:complexType>

</ xs : e l ement>
</xs:schema>

Dieses Schema sollte öffentlich zugänglich abgelegt werden. z.B. unter der URL
http://bib.fh-bielefeld/nspace/buecher.xsl. Es kann unter Verwendung des Na-
mespaces http://www.w3.org/2001/XMLSchema-instance in einem XML-Dokument
referenziert werden:
<?xml version=” 1 .0 ”?>
<buecher xmlns=” ht tp : // bib . fh−b i e l e f e l d . de/nspace /buecher ”

xmlns : x s i=” ht tp : //www.w3 . org /2001/XMLSchema−i n s t ance ”
xs i : s chemaLocat ion=” ht tp : // bib . fh−b i e l e f e l d . de/nspace /buecher . x s l ”>
<buch>

< t i t e l>Modern Operating Systems</ t i t e l>
<autor>Andrew Tanenbaum</ autor>

</buch>
</buecher>

Das Prefix xsi bezieht sich auf den Namensraum
http://www.w3.org/2001/XMLSchema-instance. Dieser stellt das Attribut

69

6 AUSZEICHNUNGSSPRACHEN 6.2 XSLT

schemaLocation bereit, über den das Schema eingebunden wird. XML Schema wird
u.a. in SOAP (s. Kapitel 6.3) und WSDL (s. Kapitel 6.4) zur Parameterdefinition und
-übergabe verwendet.

6.2. XSLT

Mit Hilfe von Extensible Stylesheet Language Transformations (XSLT) werden XML-
Dokumente in andere Datentypen wie z.B. Textdateien umgewandelt. XSLT ist ein Teil
der Extensible Stylesheet Language (XSL). Diese umfasst zusätzlich die sogenannten Ex-
tensible Stylesheet Language Formatting Objects (XSL-FO), mit denen XML-Dokumente
für die Ausgabe auf einem Bildschirm, für den Druck, etc. formatiert werden. XSLT und
XSL-FO verwenden zur jeweiligen Umwandlung von XML-Dokumenten sogenannte Sty-
lesheets, die ebenfalls in XML notiert werden. Stylesheets für XSL-FO enthalten i.d.R.
physikalische Angaben wie Papiergrösse, Abstände in Pixel, etc. Stylesheets für XSLT
stellen hingegen einen Compiler für XML-Dokumente in das jeweilige Zielformat dar.
Weiterer Bestandteil von XSL ist XPath, eine Sprache, mit der Elemente eines XML-
Dokumentes ausgewählt werden können. XSL-FO und XSLT verwenden XPath. XSLT
ist im Namensraum http://www.w3.org/1999/XSL/Transform definiert. Ein Stylesheet
hat daher folgenden Aufbau:

<?xml version=” 1 .0 ”?>
<x s l : s t y l e s h e e t xmlns :x s l=” ht tp : //www.w3 . org /1999/XSL/Transform”

version=” 1 .0 ”>
<x s l : ou tpu t method=” text ” />

</ x s l : s t y l e s h e e t>

Die Angabe der Versionsnummer im Wurzelelement stylesheet ist zwingend notwen-
dig. Mit dem Element output teilt man dem XSLT-Parser mit, welches (Datei-)Format
das Zieldokument hat. Mögliche Werte sind xml, text und html. Die eigentlichen Trans-
formationsvorschriften werden mit dem Element template eingeleitet. Sie werden auf
die Elemente des Quelldokumentes angewendet, die das Attribut match beschreibt:

<?xml version=” 1 .0 ”?>
<x s l : s t y l e s h e e t xmlns :x s l=” ht tp : //www.w3 . org /1999/XSL/Transform”

version=” 1 .0 ”>
<x s l : ou tpu t method=” text ” />
<x s l : t emp l a t e match=”/”>

he l l o , world
</ x s l : t emp l a t e>

</ x s l : s t y l e s h e e t>

Der Attributwert von match stellt eine Pfadangabe in XPath dar. Wie in Unix-Datei-
systemen dient der Schrägstrich zur Hierarchietrennung. Ein einzelner Schrägstrich wie
im Beispiel spricht jedoch nicht das Wurzelelement des Quelldokumentes an, sondern
die übergeordnete Ebene, sprich das gesamte Dokument. Das Template wird also jedes
XML-Dokument in den Text hello, world umformen. Mit for-each kann man über
Elemente gleichen Namens und gleicher Hierarchiestufe iterieren:

<?xml version=” 1 .0 ”?>
<x s l : s t y l e s h e e t xmlns :x s l=” ht tp : //www.w3 . org /1999/XSL/Transform”

version=” 1 .0 ”>
<x s l : ou tpu t method=” text ” />
<x s l : t emp l a t e match=”/”>

<x s l : f o r −each s e l e c t=”buecher /buch”>
< !−− . . . e in e i n z e l n e s Buch t rans formieren . . . −−>

</ x s l : f o r −each>
</ x s l : t emp l a t e>

</ x s l : s t y l e s h e e t>

70

6 AUSZEICHNUNGSSPRACHEN 6.2 XSLT

Mit dieser Schleife iteriert man über jedes Element namens buch, falls es ein Kindelement
von buecher ist. Die Reihenfolge, in der eine Schleife abgearbeitet wird, legt man optional
per sort innerhalb des Schleifenkörpers fest:

<?xml version=” 1 .0 ”?>
<x s l : s t y l e s h e e t xmlns :x s l=” ht tp : //www.w3 . org /1999/XSL/Transform”

version=” 1 .0 ”>
<x s l : ou tpu t method=” text ” />
<x s l : t emp l a t e match=”/”>

<x s l : f o r −each s e l e c t=”buecher /buch”>
<x s l : s o r t s e l e c t=” autor ” order=” ascending ” />
< !−− . . . e in e i n z e l n e s Buch t rans formieren . . . −−>

</ x s l : f o r −each>
</ x s l : t emp l a t e>

</ x s l : s t y l e s h e e t>

Die Liste aller Bücher wird somit aufsteigend nach dem Namen des Autors sortiert
bearbeitet. Analog zu ascending gibt es descending für absteigende Sortierung. Über
das Attribut data-type legt man die Art der Sortierung fest. Es kann die Werte text
für textuelle oder number für Sortierung nach Zahlen haben. Den Wert eines Elements
gibt man per value-of aus:

<?xml version=” 1 .0 ”?>
<x s l : s t y l e s h e e t xmlns :x s l=” ht tp : //www.w3 . org /1999/XSL/Transform”

version=” 1 .0 ”>
<x s l : ou tpu t method=” text ” />
<x s l : t emp l a t e match=”/”>

<x s l : f o r −each s e l e c t=”buecher /buch”>
<x s l : v a l u e−o f s e l e c t=” t i t e l ” />

</ x s l : f o r −each>
</ x s l : t emp l a t e>

</ x s l : s t y l e s h e e t>

Die XPath-Angaben sind i.d.R. nicht voll qualifiziert. Sie beziehen sich immer auf das
aktuelle Element. So ist titel relativ zu buecher/buch auszuwerten. Daher ist es z.B.
per ../element auch möglich, übergeordnete Elemente anzusprechen. Unformatierter
Text kann ohne eigene Elemente ausgegeben werden. Da jedoch Entities wie z.B. die
öffnende spitze Klammer < durch < ersetzt werden, sollte unformatierter Text mit
dem XSLT-Element text ausgegeben werden. Dieses akzeptiert das boolsche Attribut
disable-output-escaping:

<?xml version=” 1 .0 ”?>
<x s l : s t y l e s h e e t xmlns :x s l=” ht tp : //www.w3 . org /1999/XSL/Transform”

version=” 1 .0 ”>
<x s l : ou tpu t method=” text ” />
<x s l : t emp l a t e match=”/”>

<x s l : f o r −each s e l e c t=”buecher /buch”>
<x s l : v a l u e−o f s e l e c t=” t i t e l ” />
<x s l : t e x t d i sab l e−output−escap ing=”yes ”> , </ x s l : t e x t>

</ x s l : f o r −each>
</ x s l : t emp l a t e>

</ x s l : s t y l e s h e e t>

Somit erhält man eine kommaseparierte Ausgabe aller Buchtitel. Mit if und choose
existieren zwei Elemente zur Fallunterscheidung:

<?xml version=” 1 .0 ”?>
<x s l : s t y l e s h e e t xmlns :x s l=” ht tp : //www.w3 . org /1999/XSL/Transform”

version=” 1 .0 ”>
<x s l : ou tpu t method=” text ” />
<x s l : t emp l a t e match=”/”>

71

6 AUSZEICHNUNGSSPRACHEN 6.2 XSLT

<x s l : f o r −each s e l e c t=”buecher /buch”>
< x s l : i f t e s t=” t i t e l = ’ Ein t o l l e r Bucht i t e l ’ ”>

<x s l : v a l u e−o f s e l e c t=” autor ” />
</ x s l : i f>

</ x s l : f o r −each>
</ x s l : t emp l a t e>

</ x s l : s t y l e s h e e t>

Das gezeigte Stylesheet gibt den Namen des Buchautors nur aus, wenn der Titel Ein
toller Buchtitel lautet. Für eine Mehrfachauswahl muss choose verwendet werden,
welches auch einen Defaultzweig anbietet:
<?xml version=” 1 .0 ”?>
<x s l : s t y l e s h e e t xmlns :x s l=” ht tp : //www.w3 . org /1999/XSL/Transform”

version=” 1 .0 ”>
<x s l : ou tpu t method=” text ” />
<x s l : t emp l a t e match=”/”>

<x s l : f o r −each s e l e c t=”buecher /buch”>
<x s l : c h o o s e>

<xs l :when t e s t=” t i t e l = ’ Ein t o l l e r Bucht i t e l ’ ”>
<x s l : v a l u e−o f s e l e c t=” t i t e l ” />

</ xs l :when>
<xs l :when t e s t=” t i t e l = ’ Ein b r i l i a n t e r Bucht i t e l ’ ”>

<x s l : v a l u e−o f s e l e c t=” t i t e l ” />
</ xs l :when>
<x s l : o t h e rw i s e>

<x s l : t e x t d i sab l e−output−escap ing=”yes ”>
Ein normaler Bucht i t e l

</ x s l : t e x t>
</ x s l : o t h e rw i s e>

</ x s l : c h o o s e>
</ x s l : f o r −each>

</ x s l : t emp l a t e>
</ x s l : s t y l e s h e e t>

XSLT-Stylesheets werden i.d.R. mittels eines XSLT-Parsers auf XML-Dokumente ange-
wendet. Für visuelle Tests können alternativ ein aktueller Browser (z.B. Firefox ab Ver-
sion 1.0.2, Opera ab Version 9 oder Internet Explorer ab Version 6) verwendet werden.
Zunächst referenziert man das Stylesheet per Processing Instruction im XML-Dokument:
<?xml version=” 1 .0 ”?>
<?xml−s t y l e s h e e t h r e f=”buecher . x s l ” type=” text / x s l ”?>
<buecher>

<buch>
< t i t e l>Modern Operating Systems</ t i t e l>
<autor>Andrew Tanenbaum</ autor>

</buch>
<buch>

< t i t e l>I n t e rn e t Routing Arch i tekturen</ t i t e l>
<autor>Bassam Halabi and Danny McPherson</ autor>

</buch>
</buecher>

Dieses XML-Dokument muss im selben lokalen Verzeichnis gespeichert sein wie das fol-
gende Stylesheet, dessen Dateiname buecher.xsl lauten muss:
<?xml version=” 1 .0 ”?>
<x s l : s t y l e s h e e t xmlns :x s l=” ht tp : //www.w3 . org /1999/XSL/Transform”

version=” 1 .0 ”>
<x s l : ou tpu t method=” text ” />
<x s l : t emp l a t e match=”/”>

<x s l : f o r −each s e l e c t=”buecher /buch”>
<x s l : s o r t s e l e c t=” t i t e l ” order=” ascending ” />

72

6 AUSZEICHNUNGSSPRACHEN 6.3 SOAP

<x s l : t e x t d i sab l e−output−escap ing=”yes ”>T i t e l : </ x s l : t e x t>
<x s l : v a l u e−o f s e l e c t=” t i t e l ” />
<x s l : t e x t>
</ x s l : t e x t> < !−− Ze i l envor schub −−>
<x s l : t e x t d i sab l e−output−escap ing=”yes ”>Autor: </ x s l : t e x t>
<x s l : v a l u e−o f s e l e c t=” autor ” />
<x s l : t e x t>
</ x s l : t e x t> < !−− Ze i l envor schub −−>

</ x s l : f o r −each>
</ x s l : t emp l a t e>

</ x s l : s t y l e s h e e t>

Ruft man nun das obige XML-Dokument in einem Browser auf, wird er die Bücherliste
zur Darstellung nach den Regeln des XSLT-Stylesheets in ein Textdokument transfor-
mieren (s. Abbildung 10).

Abbildung 10: Der Webbrowser Firefox als XSLT-Parser

6.3. SOAP

Das Simple Object Access Protocol (SOAP) ist ein Protokoll zum entfernten Aufruf von
Funktionen (Remote Procedure Call (RPC)). Nachrichten zwischen Client und Server
werden in einem besonderen XML-Format ausgetauscht. Als Transportprotokoll wird
überwiegend HTTP bzw. dessen sichere Variante HTTPS eingesetzt18. Generell sind al-
le Medien möglich, die den Transport von (XML-)Dokumenten erlauben wie z.B. Email,
FTP, etc. Das Wurzelelement einer SOAP-Nachricht lautet envelope. Dieses muss ge-
nau ein Element body aufweisen, welches die vom Programmierer festgelegten Funktions-
aufrufe und Parameterübergaben beinhaltet. Optional kann dem Element body ein per
header begrenzter Abschnitt vorangestellt werden, der Metaangaben über die Nachricht
wie z.B. Authentifizierungsparameter, eine eindeutige Nachrichten-ID, o.ä. enthalten
kann. SOAP ist durch den Namespace http://schemas.xmlsoap.org/soap/envelope/
gegeben. Eine typische SOAP-Nachricht vom Client zum Server sieht wie folgt aus:

<?xml version=” 1 .0 ”?>
<S : enve lope xmlns:S=” ht tp : // schemas . xmlsoap . org / soap/ enve lope /”>

<S:body>
<ns2 :Crea t ePro j e c t

xmlns:ns2=” ht tp : // f j o−o t r s . dts−on l i n e . net /Kernel /DTSSoap”>
<User>t e s t</User>
<Pass>t e s t</Pass>
<ProjectName>Ein neues Pro jekt</ProjectName>
<ProjectDebtorID>1111</ProjectDebtorID>

</ ns2 :Crea t ePro j e c t>
</S:body>

18Daher auch der Begriff Webservice(s).

73

6 AUSZEICHNUNGSSPRACHEN 6.4 WSDL

</ S : enve lope>

Diese Nachricht ruft die Funktion CreateProject mit den Argumenten User, Pass,
ProjectName und ProjectDebtorID auf. War der Aufruf fehlerfrei und gibt die Funktion
einen Wert zurück, so antwortet der Server ebenfalls mit einem SOAP-Body:

<?xml version=” 1 .0 ”?>
<soap : enve lope

xmlns:namesp1=” ht tp : // f j o−o t r s . dts−on l i n e . net /Kernel /DTSSoap”
xmlns : x s i=” ht tp : //www.w3 . org /2001/XMLSchema−i n s t ance ”
xmlns :soapenc=” ht tp : // schemas . xmlsoap . org / soap/ encoding /”
xmlns:xsd=” ht tp : //www.w3 . org /2001/XMLSchema”
soap : encod ingSty l e=” ht tp : // schemas . xmlsoap . org / soap/ encoding /”
xmlns:soap=” ht tp : // schemas . xmlsoap . org / soap/ enve lope /”>
<soap:body>

<namesp1:CreateProjectResponse>
<CreateProjectReturn

x s i : t y p e=” x s d : s t r i n g ”>ok</CreateProjectReturn>
</ namesp1:CreateProjectResponse>

</ soap:body>
</ soap : enve lope>

Die Funktion gibt einen String mit dem Wert ok zurück. Tritt ein Fehler auf, so bein-
haltet der SOAP-Body lediglich ein Element namens Fault, das Aufschluss über das
Scheitern des Funktionsaufrufes gibt (aus Platzgründen ist das Element faultstring
hier mehrzeilig):

<?xml version=” 1 .0 ”?>
<soap : enve lope

xmlns : x s i=” ht tp : //www.w3 . org /2001/XMLSchema−i n s t ance ”
xmlns :soapenc=” ht tp : // schemas . xmlsoap . org / soap/ encoding /”
xmlns:xsd=” ht tp : //www.w3 . org /2001/XMLSchema”
soap : encod ingSty l e=” ht tp : // schemas . xmlsoap . org / soap/ encoding /”
xmlns:soap=” ht tp : // schemas . xmlsoap . org / soap/ enve lope /”>
<soap:body>

<soap :Fau l t>
<f au l t c ode>s oap :Se rve r</ f au l t c ode>
< f a u l t s t r i n g>User t e s t i s not author i zed to c a l l method

CreatePro jec t from remote host 81 . 8 9 . 2 51 . 7 9 at
/ usr / l o c a l / o t r s /Kernel /DTSSoap .pm l i n e 372 ,
&l t ;PRODUCT> ; l i n e 24 .

</ f a u l t s t r i n g>
</ soap :Fau l t>

</ soap:body>
</ soap : enve lope>

Offenbar liegt ein Berechtigungsproblem vor. Der Fehlertext lässt vermuten, dass es sich
um ein in Perl geschriebenes SOAP-Modul handelt. SOAP-Nachrichten wird ein Pro-
grammierer selten manuell erzeugen. Statt dessen setzt man entsprechende Bibliotheken
ein, die entfernte Funktionsaufrufe wie herkömmliche, lokale Funktionsaufrufe ermögli-
chen und so jegliche Komplexität verbergen19.

6.4. WSDL

Die Web Services Description Language (WSDL) ermöglicht es, automatisch aus den Si-
gnaturen der von einem SOAP-Server bereitgestellten Funktionen lokale Funktionsrümp-
fe (sogenannte Stubs) zu erzeugen. Bei schwach typisierten Programmiersprachen wie

19Vgl. andere RPC-Protokolle wie Corba oder DCOM

74

6 AUSZEICHNUNGSSPRACHEN 6.4 WSDL

z.B. Perl werden die Funktionssignaturen aus speziell formatierten Kommentaren gewon-
nen. In Java hingegen könnte dies per Introspektion über das Reflection API20 gesche-
hen. C-Derivate könnten mittels separatem Compiler die jeweiligen statischen Headerfiles
in WSDL-Dokumente transformieren. Während SOAP-Libraries die eigentlichen RPC-
Aufrufe kapseln, entbindet WSDL also den Programmierer von der Aufgabe, die Stubs
manuell mit den SOAP-Funktionen abzugleichen. WSDL stellt daher eine unidirektiona-
le Kommunikation dar, in der Clients vom Server pollen. Die Funktionsbeschreibung in
WSDL erfolgt in einem eigenen XML-Format. Neben dem Wurzelelement definitions
werden die folgend erläuterten Elemente erwartet:

message Das Element message fasst Argumente zusammen, die einer Funktion über-
gegeben werden oder die eine Funktion zurückliefert. Es umfasst meist mehrere
Kindelemente namens part, die Name und Typ des jeweiligen Argumentes be-
schreiben. XML Schema stellt hierzu die Datentypen bereit.

portType Das Pivotelement portType definiert die vom SOAP-Server bereitgestellten
Funktionen. Es verknüpft die per message definierten Argumente mit den Funkti-
onsnamen. Ein WSDL-Dokument enthält meist nur ein Element portType, welches
mehrere Kindelemente namens operation umfasst. Diese beschreiben die jeweili-
ge Funktionssignatur mit erwarteten Argumenten (Element input) und etwaigen
Rückgabewerten (Element output).

binding Das Element binding beschreibt, wie Funktionsargumente in den jeweiligen
SOAP-Nachrichten serialisiert werden sollen (Bindings). Die Auswahl der richti-
gen Serialisierungsart bzw. des Binding Styles hängt von den verwendeten SOAP-
und WSDL-Bibliotheken ab, die Server und Clients verwenden. Zwischen den Kin-
delementen von binding und portType besteht eine 1:1-Beziehung.

services Das Element services ordnet die per binding definierten Funktionsaufrufe
der URL des SOAP-Servers zu.

Ein typisches WSDL-Dokument ist wie folgt aufgebaut:

<?xml version=” 1 .0 ”?>
<w s d l : d e f i n i t i o n s

targetNamespace=” ht tp : // f j o−o t r s . dts−on l i n e . net /Kernel /DTSSoap”
xmlns: impl=” ht tp : // f j o−o t r s . dts−on l i n e . net /Kernel /DTSSoap”
xmlns:wsdlsoap=” ht tp : // schemas . xmlsoap . org /wsdl / soap/”
xmlns:wsdl=” ht tp : // schemas . xmlsoap . org /wsdl /”
xmlns :soapenc=” ht tp : // schemas . xmlsoap . org / soap/ encoding /”
xmlns:xsd=” ht tp : //www.w3 . org /2001/XMLSchema”
xmlns : tns1=” ht tp : // f j o−o t r s . dts−on l i n e . net /Kernel /DTSSoap”>

<wsdl :message name=” CreateProjectRequest ”>
<wsd l :pa r t name=”User” type=” x s d : s t r i n g ” />
<wsd l :pa r t name=”Pass” type=” x s d : s t r i n g ” />
<wsd l :pa r t name=”ProjectName” type=” x s d : s t r i n g ” />
<wsd l :pa r t name=”ProjectDebtorID” type=” x s d : s t r i n g ” />

</wsdl :message>

<wsdl :message name=”CreateProjectResponse ”>
<wsd l :pa r t name=”CreateProjectReturn ” type=” x s d : s t r i n g ” />

</wsdl :message>

<wsdl :portType name=”KernelDTSSoapHandler”>

20http://java.sun.com/docs/books/tutorial/reflect/

75

http://java.sun.com/docs/books/tutorial/reflect/

6 AUSZEICHNUNGSSPRACHEN 6.4 WSDL

<wsd l : ope ra t i on name=” CreatePro jec t ”
parameterOrder=”User Pass ProjectName ProjectDebtorID”>
<wsd l : i nput message=” impl :CreatePro jec tReques t ”

name=” CreateProjectRequest ” />
<wsdl :output message=” impl :CreatePro jectResponse ”

name=”CreateProjectResponse ” />
</ wsd l : ope ra t i on>

</wsdl :portType>

<wsd l :b ind ing name=”KernelDTSSoapSoapBinding”
type=” impl:KernelDTSSoapHandler ”>
<wsd l soap :b ind ing s t y l e=” rpc ”

t ranspor t=” ht tp : // schemas . xmlsoap . org / soap/http ” />
<wsd l : ope ra t i on name=” CreatePro jec t ”>

<wsd l soap :ope ra t i on soapAction=”” />
<wsd l : i nput name=”CreateProjectRequest ”>

<wsdlsoap:body
encod ingSty l e=” ht tp : // schemas . xmlsoap . org / soap/ encoding /”
namespace=” ht tp : // f j o−o t r s . dts−on l i n e . net /Kernel /DTSSoap”
use=” l i t e r a l ” />

</ wsd l : i nput>
<wsdl :output name=”CreateProjectResponse ”>

<wsdlsoap:body
encod ingSty l e=” ht tp : // schemas . xmlsoap . org / soap/ encoding /”
namespace=” ht tp : // f j o−o t r s . dts−on l i n e . net /Kernel /DTSSoap”
use=” l i t e r a l ” />

</ wsdl :output>
</ wsd l : ope ra t i on>

</ wsd l :b ind ing>

<wsd l : s e r v i c e name=”KernelDTSSoapHandlerService ”>
<wsd l :po r t b inding=” impl:KernelDTSSoapSoapBinding”

name=”KernelDTSSoap”>
<wsd l soap :addre s s

l o c a t i o n=” ht tp : // f j o−o t r s . dts−on l i n e . net / soap” />
</ wsd l :po r t>

</ w sd l : s e r v i c e>
</ w s d l : d e f i n i t i o n s>

Unter der URL http://fjo-otrs.dts-online.net/soap wird ein SOAP-Service be-
reitgestellt. Dieser umfasst die Funktion CreateProject, welche vier Zeichenketten als
Parameter erwartet. Diese heissen User, Pass, ProjectName und ProjectDebtorID.
Die Funktion liefert als Rückgabewert ebenfalls eine Zeichenkette. Als Serialisierungs-
art definiert das Element binding hier den Typ RPC/literal. Es gibt fünf Serialisie-
rungsarten, die sich in zwei Klassen einteilen lassen: RPC encodierte und Document
encodierte Binding Styles. Verwendet man letztere, so werden die Funktionsargumente
in der WSDL-Definition als eigenes XML-Schema dargestellt. Dies hat den Vorteil, dass
jede SOAP-Nachricht mit einem generischen XML-Parser gegen dieses Schema verifiziert
werden kann. Folgend werden alle Serialisierungsarten erläutert:

RPC/encoded Die Funktionsargumente einer nach RPC/encoded serialisierten SOAP-
Nachricht weisen nicht nur den Wert des jeweiligen Argumentes, sondern auch
dessen Typ auf, z.B.:

<?xml version=” 1 .0 ”?>
<S : enve lope xmlns:S=” ht tp : // schemas . xmlsoap . org / soap/ enve lope /”>

<S:body>
<ns2 :Crea t ePro j e c t

xmlns:ns2=” ht tp : // f j o−o t r s . dts−on l i n e . net /Kernel /DTSSoap”
xmlns : x s i=” ht tp : //www.w3 . org /2001/XMLSchema−i n s t ance ”

76

6 AUSZEICHNUNGSSPRACHEN 6.4 WSDL

xmlns:xsd=” ht tp : //www.w3 . org /2001/XMLSchema”>
<User x s i : t y p e=” x s d : s t r i n g ”>t e s t</User>
<Pass x s i : t y p e=” x s d : s t r i n g ”>t e s t</Pass>
<ProjectName

x s i : t y p e=” x s d : s t r i n g ”>Ein neues Pro jekt</ProjectName>
<ProjectDebtorID x s i : t y p e=” x s d : s t r i n g ”>1111</ProjectDebtorID>

</ ns2 :Crea t ePro j e c t>
</S:body>

</ S : enve lope>

RPC/literal SOAP-Nachrichten im Stil von RPC/literal verzichten auf eine Typangabe
bei Funktionsargumenten:

<?xml version=” 1 .0 ”?>
<S : enve lope xmlns:S=” ht tp : // schemas . xmlsoap . org / soap/ enve lope /”>

<S:body>
<ns2 :Crea t ePro j e c t

xmlns:ns2=” ht tp : // f j o−o t r s . dts−on l i n e . net /Kernel /DTSSoap”>
<User>t e s t</User>
<Pass>t e s t</Pass>
<ProjectName>Ein neues Pro jekt</ProjectName>
<ProjectDebtorID>1111</ProjectDebtorID>

</ ns2 :Crea t ePro j e c t>
</S:body>

</ S : enve lope>

Document/literal Verwendet man die Bindungsart Document/literal, so wird das
WSDL-Dokument um einen Schemaabschnitt erweitert. Auf dessen Elemente ver-
weisen dann die Funktionsargumente:

< !−− . . . −−>
<wsd l : type s>

<xsd:schema
xmlns : x s i=” ht tp : //www.w3 . org /2001/XMLSchema−i n s t ance ”
xmlns:xsd=” ht tp : //www.w3 . org /2001/XMLSchema”>
<xsd :e l ement name=”UserElement” x s i : t y p e=” x s d : s t r i n g ” />
<xsd :e l ement name=”PassElement” x s i : t y p e=” x s d : s t r i n g ” />
<xsd :e l ement name=”ProjectNameElement”

x s i : t y p e=” x s d : s t r i n g ” />
<xsd :e l ement name=”ProjectDebtorIDElement ”

x s i : t y p e=” x s d : s t r i n g ” />
</xsd:schema>

</ wsd l : type s>
<wsdl :message name=” CreateProjectRequest ”>

<wsd l :pa r t name=”User” element=”UserElement” />
<wsd l :pa r t name=”Pass” element=”PassElement” />
<wsd l :pa r t name=”ProjectName” element=”ProjectNameElement” />
<wsd l :pa r t name=”ProjectDebtorID”

element=”ProjectDebtorIDElement ” />
</wsdl :message>
< !−− . . . −−>

Quellen wie Butek (2005) geben an, dass SOAP-Nachrichten nach Document/lite-
ral nicht den Namen der aufgerufenen Funktion mitführen, z.B.:

<?xml version=” 1 .0 ”?>
<S : enve lope xmlns:S=” ht tp : // schemas . xmlsoap . org / soap/ enve lope /”>

<S:body
xmlns:ns2=” ht tp : // f j o−o t r s . dts−on l i n e . net /Kernel /DTSSoap”>

<ns2 :User>t e s t</ ns2 :User>
<ns2 :Pass>t e s t</ ns2 :Pass>

77

6 AUSZEICHNUNGSSPRACHEN 6.4 WSDL

<ns2:ProjectName>Ein neues Pro jekt</ns2:ProjectName>
<ns2 :ProjectDebtorID>1111</ ns2 :ProjectDebtorID>

</S:body>
</ S : enve lope>

Eine derartige Nachricht wäre jedoch nicht konform mit dem SOAP-Schema, wel-
ches nur ein Kindelement im Body zulässt. Quellen wie Shohoud (2003) zeigen
daher Beispielnachrichten, die nach Document/literal encodiert sind und dennoch
den Funktionsnamen aufweisen.

Document/literal wrapped Im Unterschied zu Document/literal, welches für jedes Ar-
gument einer Funktion ein eigenes, per Schema definiertes Element verwendet,
kapselt Document/literal wrapped die Argumente einer Funktion in einem komple-
xen Datentyp. Das WSDL-Dokument hat daher folgenden Aufbau:

< !−− . . . −−>
<wsd l : type s>

<xsd:schema
xmlns : x s i=” ht tp : //www.w3 . org /2001/XMLSchema−i n s t ance ”
xmlns:xsd=” ht tp : //www.w3 . org /2001/XMLSchema”>
<xsd :e l ement name=”CreateProjectParameters ”>

<xsd:complexType>
<xsd : s equence>

<xsd :e l ement name=”User” x s i : t y p e=” x s d : s t r i n g ” />
<xsd :e l ement name=”Pass” x s i : t y p e=” x s d : s t r i n g ” />
<xsd :e l ement name=”ProjectName”

x s i : t y p e=” x s d : s t r i n g ” />
<xsd :e l ement name=”ProjectDebtorID”

x s i : t y p e=” x s d : s t r i n g ” />
</ xsd : sequence>

</xsd:complexType>
<xsd :e l ement name=”CreateProjectParameters ”>

</xsd:schema>
</ wsd l : type s>
<wsdl :message name=” CreateProjectRequest ”>

<wsd l :pa r t name=”parameters ”
element=”CreateProjectParameters ” />

</wsdl :message>
< !−− . . . −−>

Document/encoded Die Serialisierungsart Document/encoded wird von keiner Anwen-
dung eingesetzt. Eine Implementierung müsste wie bei RPC/encoded die Datenty-
pen in der SOAP-Nachricht aufführen und in der WSDL-Beschreibung ein Schema
definieren, welches ebenfalls alle Argumente samt Datentypen darstellt.

In der Praxis werden vorwiegend RPC/literal und Document/literal wrapped verwen-
det. RPC/encoded entspricht nicht den Vorgaben der Web Services Interoperability Or-
ganization (WS-I)21, einem Firmenkonsortium, welches das Zusammenspiel von Web
Services-Plattformen verschiedener Anbieter sicherstellen möchte.

21http://www.ws-i.org

78

http://www.ws-i.org

7 DATENBANKABFRAGESPRACHEN

7. Datenbankabfragesprachen

7.1. SQL

Die Structured Query Language (SQL) dient zur Daten- und Strukturmanipulation sowie
zur Verwaltung einer Datenbank. Sie stellt keine Programmiersprache dar. So fehlen
u.a. Möglichkeiten zur Variablendefinition und Kontrollstrukturen wie Schleifen. SQL
ist semantisch an umgangssprachliches Englisch angelehnt. Anweisungen müssen mit
einem Semikolon abgeschlossen werden:

SELECT ∗ FROM studenten ;

Der Befehl selektiert alle Datensätze (Zeilen) sowie alle Attribute (Spalten) aus der
Tabelle studenten. Um unnötige Last zu vermeiden, sollten zum einen nur tatsächlich
von der Anwendung benötigte Attribute selektiert werden, z.B.:

SELECT emai l FROM studenten ;

Ausserdem sollte die Anzahl der ausgewählten Datensätze limitiert werden, sofern z.B.
von vornherein feststeht, dass die Anwendung nur Studenten mit einer bestimmten Ma-
trikelnummer verarbeiten soll:

SELECT emai l FROM studenten WHERE matr ike ln r >= 200000;

Die Optionen der WHERE-Klausel stellen boolsche Ausdrücke dar und können mit AND,
OR oder NOT (als Negation vor einem Ausdruck) kombiniert werden:

SELECT emai l FROM studenten \
WHERE (matr ike ln r >= 200000) OR (matrikelnummer = 100000) ;

Mit der Anweisung INSERT fügt man einer Relation Datensätze hinzu. Zu beachten
ist, dass Zeichenketten im Gegensatz zu den meisten Programmiersprachen in einfache
Anführungsstriche gefasst werden müssen:

INSERT INTO studenten (matrikelnummer , vorname , name , emai l) VALUES (
203583 ,
’ Fe l i x ’ ,
’ Ogr is ’ ,
’ f e l i x@fh−b i e l e f e l d . de ’

) ;

Lässt man beim Einfügen eines neuen Datensatzes Attribute aus, so wird der Datensatz
an ihrer Stelle mit Defaultwerten ergänzt, die der Programmierer beim Anlegen der
Relation vorgegeben hat. Wurden keine Defaultwerte vorgegeben, so erhält man einen
Fehler. Der Befehl DELETE zum Löschen von Datensätzen ähnelt der SELECT-Anweisung:

DELETE FROM studenten WHERE matrikelnummer < 100000;

Datensätze können mit dem Befehl UPDATE verändert werden. Hierbei kann man den
Attributen nicht nur feste Werte zuweisen:

UPDATE studenten SET matrikelnummer = matrikelnummer + 1000 ;

Somit wird jede Matrikelnummer um 1000 erhöht. Vor der Änderung kann eine Selektion
stattfinden:

UPDATE studenten SET matrikelnummer = matrikelnummer − 1000 \
WHERE name = ’ Meier ’ ;

Die gezeigte Anweisung ändert die Matrikelnummer nur von Studenten, die Meier heis-
sen. Mit dem Befehl CREATE TABLE werden Relationen angelegt:

79

7 DATENBANKABFRAGESPRACHEN 7.1 SQL

CREATE TABLE studenten (
id SERIAL,
matrikelnummer INTEGER,
name VARCHAR(100) ,
vorname VARCHAR(100) ,
emai l VARCHAR(100)

) ;

SQL bzw. PostgreSQL kennt eine Vielzahl von Datentypen. Tabelle 8 erläutert die wich-
tigsten.

Tabelle 8: Ausgewählte Datentypen in PostgreSQL

Datentyp Beschreibung
SMALLINT 2 Byte grosser Integerwert im Bereich von -32768 bis

32767
INTEGER 4 Byte grosser Integerwert im Bereich von

-2147483648 bis 2147483647
BIGINT 8 Byte grosser Integerwert im Bereich von

-9223372036854775808 bis 9223372036854775807
SERIAL 4 Byte grosser Integerwert im Bereich von

-2147483648 bis 2147483647, der beim Einfügen
eines neuen Datensatzes atomar inkrementiert wird

BIGSERIAL 8 Byte grosser Integerwert im Bereich von
-9223372036854775808 bis 9223372036854775807,
der beim Einfügen eines neuen Datensatzes atomar
inkrementiert wird

REAL 4 Byte grosser Fließkommawert mit einer Genauig-
keit von 6 Stellen

DOUBLE PRECISION 8 Byte grosser Fließkommawert mit einer Genauig-
keit von 15 Stellen

VARCHAR(n) Zeichenkette mit maximaler Länge von n Zeichen
CHAR(n) Zeichenkette mit fester Länge von n Zeichen, unge-

nutzte Stellen müssen mit Leerzeichen gefüllt werden
TEXT beliebig lange Zeichenkette
BOOLEAN boolscher Wert; logisch wahr kann durch TRUE, 1,

’t’, ’true’, ’y’, ’yes’, ’1’ dargestellt werden, lo-
gisch falsch durch FALSE, 0, ’f’, ’false’, ’n’, ’no’,
’0’

TIMESTAMP WITHOUT
TIME ZONE

8 Byte grosser Zeit- & Datumswert (s.a. Kapitel
4.2.3)

TIMESTAMP WITH TIME
ZONE

8 Byte grosser Zeit- & Datumswert, der vor der Aus-
gabe in die lokalen Zeitzone umgerechnet wird

Die Typen SERIAL und BIGSERIAL verdienen besondere Beachtung. Weisst man einem
derartigen Feld innerhalb einer INSERT-Anweisung keinen Wert zu, so wird gegenüber
einer vorangegangenen Einfügeoperation automatisch der um 1 grössere Wert verwen-
det. Da derartige Attribute atomar inkrementiert werden, ist gewährleistet, dass z.B.
das Feld id der Tabelle studenten eindeutig ist. Es ist daher zum primären Schlüssel
geeignet. Problematisch bei diesen autoinkrementellen Typen können Überläufe werden.
Geht man von einer Lebensdauer der Tabelle von 10 Jahren aus, so können Felder vom

80

7 DATENBANKABFRAGESPRACHEN 7.1 SQL

Typ SERIAL höchstens

231

10 ∗ 365 ∗ 86400
U

s
≈ 7

U

s

und Felder vom Typ BIGSERIAL maximal

263

10 ∗ 365 ∗ 86400
U

s
≈ 2, 9 ∗ 1010 U

s

verarbeiten, bevor ein Überlauf eintritt (mit U
s : Updates pro Sekunde). Sogenannte Con-

straints stellen Bedingungen dar, die jeder Datensatz erfüllen muss. Erfüllt er diese nicht,
wird er nicht in die Relation aufgenommen bzw. nicht aktualisiert. Constraints werden
bei der Tabellendefinition angegeben:

CREATE TABLE studenten (
id SERIAL NOT NULL,
matrikelnummer INTEGER NOT NULL,
name VARCHAR(100) NOT NULL,
vorname VARCHAR(100) NOT NULL,
emai l VARCHAR(100) NOT NULL

) ;

Implizit hat jedes Attribut einen Null-Constraint, d.h. dem Attribut muss nicht zwingend
ein Wert zugewiesen werden, damit der Datensatz gültig ist. Die Not-Null -Bedingungen
im Beispiel verlangen hingegen, dass den Attributen immer ein Wert zugewiesen ist. Der
Unique-Constraint erzwingt, dass der Wert eines Attributes einmalig in der gesamten
Relation ist:

CREATE TABLE studenten (
id SERIAL NOT NULL,
matrikelnummer INTEGER NOT NULL UNIQUE,
name VARCHAR(100) NOT NULL,
vorname VARCHAR(100) NOT NULL,
emai l VARCHAR(100) NOT NULL

) ;

Somit darf jede Matrikelnummer nur ein einziges Mal vorkommen. Zu beachten ist,
dass nur Attribute eine Unique-Bedingung erhalten sollten, die auch einen expliziten
Not-Null -Constraint besitzen. Nur belegte, sprich mit einem Wert versehene Felder un-
terliegen einem Unique-Constraint, so dass trotz vermeintlicher Einzigartigkeit mehrere
nicht wertbehaftete Felder in einer Relation vorkommen können. Sogenannte Check -
Constraints werden als boolsche Ausdrücke formuliert:

CREATE TABLE studenten (
id SERIAL NOT NULL,
matrikelnummer INTEGER NOT NULL UNIQUE,
name VARCHAR(100) NOT NULL,
vorname VARCHAR(100) NOT NULL,
emai l VARCHAR(100) NOT NULL CHECK(char length (emai l) > 3)

) ;

Die Funktion char length() ermittelt die Zeichenlänge eines Strings, hier des Attribu-
tes email. Folglich müssen alle Emailadressen 4 oder mehr Zeichen aufweisen. Ferner
können derartige Bedingungen nicht nur pro Attribut definiert werden, sondern auch als
Tabellenconstraint:

CREATE TABLE studenten (
id SERIAL NOT NULL,

81

7 DATENBANKABFRAGESPRACHEN 7.1 SQL

matrikelnummer INTEGER NOT NULL UNIQUE,
name VARCHAR(100) NOT NULL,
vorname VARCHAR(100) NOT NULL,
emai l VARCHAR(100) NOT NULL CHECK(char length (emai l) > 3) ,
CHECK (name != vorname)

) ;

Somit wird versichert, dass der Name eines Studenten nicht gleich seinem Vornamen
ist. Primärschlüssel werden mit der Option PRIMARY KEY definiert, Fremdschlüssel per
REFERENCES oder FOREIGN KEY:

CREATE TABLE studenten (
id SERIAL NOT NULL PRIMARY KEY,
matrikelnummer INTEGER NOT NULL UNIQUE,
name VARCHAR(100) NOT NULL,
vorname VARCHAR(100) NOT NULL,
emai l VARCHAR(100) NOT NULL CHECK(char length (emai l) > 3) ,
p l z INTEGER REFERENCES s taed t e (p l z) ,
CHECK (name != vorname)

) ;

CREATE TABLE s t a ed t e (
p l z INTEGER NOT NULL UNIQUE PRIMARY KEY,
s tadt VARCHAR(100)

) ;

Schlüssel, die aus mehreren Attributen bestehen, müssen wie Tabellen-Constraints defi-
niert werden. Allerdings sollte man sie nur mit Bedacht einsetzen, da sie oftmals Indiz
für ein nicht normalisiertes Datenmodell sind:

CREATE TABLE raeume (
gebaeude nummer INTEGER NOT NULL,
raum nummer INTEGER NOT NULL,
s i t z p l a e t z e INTEGER NOT NULL CHECK(s i t z p l a e t z e > 0) ,
PRIMARY KEY (gebaeude nummer , raum nummer)

) ;

CREATE TABLE mi ta rb e i t e r (
p e r s ona l n r INTEGER NOT NULL UNIQUE PRIMARY KEY,
name VARCHAR(100) NOT NULL,
gebaeude nummer INTEGER NOT NULL,
raum nummer INTEGER NOT NULL,
FOREIGN KEY (gebaeude nummer , raum nummer) REFERENCES raeume

) ;

Sind die Attributnamen von Primär- und Fremdschlüssel gleichlautend, so können sie
beim Referenzieren der Fremdtabelle weggelassen werden. Vergisst man bei der Defi-
nition der Fremdschlüssel den Not-Null -Constraint, können in die Relation Datensätze
eingefügt werden, die nicht mit einem Datensatz in der Fremdtabelle verknüpft sind.
Relationen werden per DROP gelöscht:

DROP TABLE studenten ;

Wird die Tabelle jedoch noch als Fremdtabelle referenziert, kann sie nicht gelöscht wer-
den. Relationen können per ALTER TABLE verändert werden. So kann z.B. ein weiteres
Attribut hinzugefügt werden:

ALTER TABLE studenten ADD s t r a s s e VARCHAR(1 0 0) ;

Analog werden Spalten gelöscht:

ALTER TABLE studenten DROP s t r a s s e ;

82

7 DATENBANKABFRAGESPRACHEN 7.1 SQL

SQL-Befehle dienen nicht nur zum Verändern von Daten und Relationen, sondern auch,
um Benutzer und Datenbanken anzulegen:
CREATE USER benutzer1 WITH PASSWORD ’ geheim ’ ;

Die Anweisung legt den User benutzer1 mit dem Passwort geheim an. Das Schlüsselwort
WITH ist optional. Da Benutzerkonten intern in Relationen gespeichert werden, kommen
zur Benutzermanipulation ebenfalls SQL-Anweisungen zum Einsatz:
ALTER USER benutzer1 PASSWORD ’ geheimer ’ ;

Zusätzlich können einem Benutzer die Rechte zum Anlegen von Datenbanken (s.u.) oder
weiteren Benutzern zugesprochen werden:
ALTER USER benutzer1 CREATEDB;
ALTER USER benutzer1 CREATEUSER;

Per DROP USER wird ein Login gelöscht. Den Benutzer, mit dem man gerade angemeldet
ist, kann man jedoch nicht löschen. Nach dem Anlegen des Datenbankclusters enthält
ein PostgreSQL-Server drei Datenbanken:

template1 Die Datenbank template1 dient per default als Vorlage für weitere Daten-
banken. Sie kann vom Administrator angepasst werden, so dass neue Datenbanken
mit den veränderten Werten angelegt werden.

template0 Die Datenbank template0 diente als Vorlage für template1. Sie stellt daher
die ”Ur-Datenbank”dar, akzeptiert standardmässig keine Verbindungen und wird
nur im Notfall zur Wiederherstellung von template1 verwendet.

postgres Die Datenbank postgres ist eine Beispieldatenbank, die von template1 beim
Anlegen des Datenbankclusters kopiert wurde. Sie hat den selben Status wie z.B.
die Datenbank test eines MySQL-Servers und kann auf einem Produktivsystem
gelöscht werden.

Weitere Datenbanken werden mit dem Befehl CREATE DATABASE angelegt:
CREATE DATABASE shop WITH OWNER = benutzer2 ;

Dem User benutzer2 gehört somit die Datenbank shop und besitzt implizit das Recht,
in dieser Datenbank Tabellen anzulegen. Auch hier ist das Füllwort WITH optional. Per
GRANT und REVOKE können einem Benutzer Rechte zugesprochen bzw. entzogen werden:
GRANT SELECT ON studenten TO benutzer1 ;

Der Datenbankuser benutzer1 erhält hiermit das Recht zum Abrufen von Datensätzen
aus der Tabelle studenten. Neben SELECT können alle oben erläuterten SQL-Befehle,
eine beliebige Kombination dieser Befehle oder das subsummierende Schlüsselwort ALL
als Berechtigungsstufe vergeben werden:
GRANT UPDATE,DELETE ON studenten TO benutzer3 ;
GRANT ALL ON studenten TO benutzer4 ;

Analog setzt man REVOKE ein, um Rechte zu entziehen:
REVOKE ALL ON studenten FROM benutzer3 ;
REVOKE INSERT ON studenten FROM benutzer5 ;

Rechte werden nicht nur auf Tabellenebene vergeben, sondern auch auf Schemata und
Datenbanken. Ein Schema kann als Container oder auch Namensraum (namespace) in-
nerhalb einer Datenbank interpretiert werden. Eine Relation ist genau einem Schema
zugeordnet (s. Abbildung 11). Berechtigungen zum Kreieren einer Tabelle werden daher
an das jeweilige Schema geknüpft. Der Name eines Schemas wird als Prefix vor einem
Tabellennamen angegeben:

83

7 DATENBANKABFRAGESPRACHEN 7.1 SQL

Abbildung 11: Der schematische Aufbau eines PostgreSQL-Datenbankclusters

SELECT ∗ FROM schema1 . studenten ;

Lässt man den Schemanamen aus, so wird implizit das Schema public verwendet. Daher
sind die beiden folgenden Anweisungen äquivalent:

DELETE FROM pub l i c . studenten WHERE matrikelnummer > 1000000;
DELETE FROM studenten WHERE matrikelnummer > 1000000;

Per GRANT CREATE wird generell das Recht zum Anlegen von Schemata oder Tabellen
vergeben:

GRANT CREATE ON SCHEMA schema1 TO benutzer3 ;

Der User benutzer3 erhält somit das Recht, Tabellen im Schema schema1 anzulegen.
Analog kann ihm dieses Recht wieder entzogen werden:

REVOKE CREATE ON SCHEMA schema1 FROM benutzer3 ;

Um Schemata anzulegen, benötigt man das CREATE-Recht auf Datenbankebene:

GRANT CREATE ON DATABASE shop TO benutzer3 ;

Der Besitzer einer Datenbank verfügt implizit über die Rechte zum Anlegen von Schema-
ta und Relationen. Die meisten Anwendungen wie auch OTRS verlagern Berechtigungs-

84

7 DATENBANKABFRAGESPRACHEN 7.1 SQL

hierarchien nicht in die Datenbank, sondern greifen mit nur einem Datenbankbenutzer
auf Relationen zu und implementieren eigene Zugriffsrechte.

85

8 OTRS

8. OTRS

8.1. Installation

Die Installation von OTRS gestaltet sich aufgrund des Portssystems von FreeBSD rela-
tiv einfach. So werden u.a. Perlmodule zum Ansprechen der Datenbank und zum Par-
sen und Erzeugen von Emails automatisch installiert. Abbildung 12 zeigt das Opti-
onsmenü beim obligatorischen Aufruf von make config install clean im Verzeichnis
/usr/ports/devel/otrs. Hier wurde die Unterstützung von PostgreSQL-Datenbanken

Abbildung 12: Das Optionsmenü zur Installation von OTRS

aktiviert, die von MySQL-Datenbanken deaktiviert. OTRS kann optional Emails direkt
per SMTP versenden. Dies wurde ebenfalls abgewählt, da der lokale Postfix verwendet
werden soll. Während der Installation wird der Systembenutzer otrs sowie die Gruppe
otrs angelegt. Dies ist notwendig, da OTRS periodisch ausgeführte Programme, soge-
nannte cronjobs benötigt. Aus Sicherheitsgründen sollten diese nicht mit den Rechten
des Administrators, sprich Root-Rechten laufen. Nach der Installation beinhaltet das
Homeverzeichnis /usr/local/otrs einer OTRS-Installation 4 Unterverzeichnisse:

Kernel Hier liegen die Konfigurationsdateien, sämtliche Perlmodule und HTML-Tem-
plates für die Weboberfläche

bin Skripte zur Administration sind im Verzeichnis bin hinterlegt

scripts Hier sind Konfigurationsbeispiele für den Apache Webserver, diverse Testskripte
sowie SQL-Anweisungen zum Anlegen einer OTRS-Datenbankinstanz gespeichert

var In den Unterverzeichnissen von var werden zur Laufzeit temporäre Dateien abgelegt;
im Verzeichnis var/httpd liegen ferner Bilder bzw. Icons für die Weboberfläche

86

8 OTRS 8.2 Administration

Ausserhalb des Homeverzeichnisses legt OTRS keine Dateien an (abgesehen von der
Datenbank, die im Verzeichnis /var/db/pgsql liegt). Die Datenbank für eine OTRS-
Instanz wird in 2 Schritten angelegt:

1. Als Datenbankadministrator legt man den Benutzer otrs an und die ihm gehörende
Datenbank otrs an. Hierzu ruft man das Kommandozeilenprogramm psql mit den
Parametern postgres pgsql auf, um sich als DB-Admin pgsql auf die Datenbank
postgres zu verbinden. Anschliessend setzt man die folgenden SQL-Befehle ab:
CREATE USER ot r s PASSWORD ’ geheim ’ ;
CREATE DATABASE ot r s OWNER ot r s ;

2. Struktur und initiale Daten werden mit 3 SQL-Skripten in die neu angelegte Da-
tenbank geschrieben. Diese liegen im Verzeichnis scripts/database und müssen
in der angegebenen Reihenfolge mit dem Kommandozeilenprogramm psql einge-
spielt werden:
psq l −f o t r s−schema . po s t g r e s q l . s q l o t r s o t r s
psq l −f o t r s− i n i t i a l i n s e r t . p o s t g r e s q l . s q l o t r s o t r s
psq l −f o t r s−schema−post . p o s t g r e s q l . s q l o t r s o t r s

Die Datei otrs-schema.postgresql.sql enthält alle Relationen der OTRS-Da-
tenbank. Basisdaten wie z.B. der Administrator des OTRS oder Emailtemplates
werden mit otrs-initial insert.postgresql.sql geschrieben. Die Datenbank
wird mit Constraints aus otrs-schema-post.postgresql.sql kompletiert.

Das Passwort des OTRS-Administrators root@localhost hat per default den Wert
root. Dies sollte auf jeden Fall mit dem Skript bin/otrs.setPassword geändert werden:
$ bin / o t r s . setPassword roo t@ loca lho s t neues Passwort

8.2. Administration

Im Unterverzeichnis bin des OTRS-Homeverzeichnisses befinden sich Skripte zur Admi-
nistration einer OTRS-Instanz, von denen die gebräuchlichsten nachfolgend beschrieben
werden:

CheckDB.pl überprüft, ob die Datenbank konnektiert werden kann und ob in einer
durch die Installation angelegten Systemtabelle Werte vorhanden sind

Cron.sh legt die crontab für den Systembenutzer der OTRS-Instanz an, mit der der
Systemdienst cron periodisch Wartungsaufgaben ausführt. Das Skript setzt die
crontab aus Textdateien im Verzeichnis var/cron zusammen. Dateien, deren Name
auf .dist enden, werden nicht beachtet. Es handelt sich dabei um entsprechende
Vorlagen

GenericAgent.pl wird periodisch als cronjob ausgeführt und versendet z.B. Emails im
Falle von eskalierten Tickets. Im Verzeichnis Kernel/System/GenericAgent kön-
nen hierfür selbst erstellte Perlmodule installiert werden

PendingJobs.pl wird ebenfalls als cronjob ausgeführt und setzt Tickets, die sich in einem
der Stati vom Typ PendingAuto befinden, in den jeweils nächsten Status

PostMaster.pl nimmt Emails von der Standardeingabe entgegen und speichert sie in
der Datenbank. Es sollte i.d.R. mit dem Parameter -t 0 aufgerufen werden, damit
etwaige Header in der Email nicht ausgewertet werden und so z.B. die Queue, in
die die Email einsortiert wird, nicht vorgegeben werden kann

87

8 OTRS 8.3 Module

SetPermissions.sh passt die Berechtigungen aller Dateien und Verzeichnisse unterhalb
des OTRS-Homeverzeichnisses an. Es sollte immer mit den folgenden 5 Parametern
aufgerufen werden:

• vollständige Pfadangabe des OTRS-Homeverzeichnisses

• Name des Systembenutzers der OTRS-Instanz

• Name des Systembenutzers, mit dessen Rechten der Webserver läuft

• Name der Systemgruppe der OTRS-Instanz

• Name der Systemgruppe, mit dessen Rechten der Webserver läuft

UnlockTickets.pl entsperrt bei Aufruf mit dem Parameter --timeout alle Tickets, die
länger als die pro Queue eingestellte Zeitspanne von einem Bearbeiter gesperrt
sind, oder bei Aufruf per --all alle gesperrten Tickets

opm.pl dient zum Einspielen, Deinstallieren und Erzeugen von Modulpaketen

otrs.checkModules überprüft, ob alle von OTRS benötigten Perlmodule installiert sind

otrs.setPassword setzt das Passwort für einen OTRS-Benutzer (wie oben gezeigt)

8.3. Module

OTRS ist modular aufgebaut. Die Perlmodule unterhalb des Verzeichnisses Kernel ab-
strahieren

• den Datenbankzugriff

• die Funktions- oder auch Business-Logik

• die auf Templates basierende Webseitendarstellung

• den Zugriff auf die Weboberfläche.

Abbildung 13 zeigt den schematischen Aufbau einer OTRS-Instanz. Die Module zum
Zugriff auf die Webseiten liegen im Verzeichnis Kernel/System/Web. Ihr Name beginnt
per Konvention mit Interface. So stellt z.B. InterfaceAgent.pm den Zugriff auf die
Weboberfläche für Bearbeiter zur Verfügung. Setzt man ein standardmässiges OTRS
ein, so werden diese Zugriffsmodule vom Webserver über CGI-Skripte angesprochen, die
in scripts/cgi-bin unterhalb des OTRS-Homeverzeichnisses liegen. Um den bei je-
dem Seitenaufruf notwendigen CGI-Prozess zu umgehen, wurde das Modul DTSWeb.pm
entwickelt, welches beim Starten in den Webserver geladen wird. Die eigentliche We-
boberfläche wird von Modulen im Verzeichnis Kernel/Modules aufgebaut. Sie nehmen
etwaige, vom Anwender per Formular übergebene Daten an und speichern sie mit Hil-
fe der Businesslogik in die Datenbank. Analog erzeugen sie mit über die Businesslogik
abgerufenen Werten aus der Datenbank und Webseitenvorlagen die Oberfläche. Die Tem-
plates liegen in Verzeichnissen unterhalb von Kernel/Output/HTML. Die Namen dieser
Verzeichnisse entsprechen dem Namen des eingestellten Theme. Wird ein Template nicht
gefunden, so wird per default im Verzeichnis Kernel/Output/HTML/Standard gesucht.
Zusätzlich befinden sich im Verzeichnis Kernel/Languages Perlmodule für verschiede-
ne Sprachen, z.B. de.pm für die Darstellung in deutsch. Diese Sprachsets können ein-
fach erweitert bzw. angepasst werden, indem man dort Module wie de Custom.pm oder
en Custom.pm hinterlegt. Das Verzeichnis Kernel/System stellt die Funktionslogik ei-
ner OTRS-Instanz dar. Sie greift über Module in Kernel/System/DB auf die Datenbank

88

8 OTRS 8.3 Module

Abbildung 13: Der schematische Aufbau von OTRS

Nicht dargestellt ist der schreibende Zugriff auf Templates (s. Kapitel 9.4) und der
Versand von Emails aus dem System

zu. In den Verzeichnissen Kernel/System/Auth und Kernel/System/CustomerAuth lie-
gen Module zur Authentifizierung von Bearbeitern bzw. Kunden. Sie können gegen die
Datenbank, LDAP-Verzeichnisse, Remote Authentication Dial-In User Service (RADI-
US)-Server oder andere Webserver authentifiziert werden. OTRS verfügt über minde-
stens zwei Konfigurationsdateien. Nacheinander werden Kernel/Config/Defaults.pm,
alle optionalen Perlmodule in Kernel/Config/Files und die Datei Kernel/Config.pm
geladen. Dabei überschreibt bzw. ergänzt eine nachfolgende Datei die jeweils vorangegan-
genen. Das System kann auch über die Weboberfläche konfiguriert werden. Das mitgelie-
ferte Frontendmodul SysConfig beschreibt jedoch nicht die erwähnten Perlmodule, son-
dern XML-Dateien, aus denen die Datei Kernel/Config/Files/ZZZAAuto.pm erzeugt
wird. Diese wird wie oben erläutert zwischen der Defaults.pm und der Config.pm ausge-
wertet. Die Defaults.pm sollte man nicht verändern, da sie bei einem Update des OTRS
ggf. geändert wird. Konfigurationsoptionen werden in der Kernel/Config.pm nicht durch
reines Auflisten notiert, sondern als Membervariablen der Klasse Kernel::Config in der
Methode Load definiert, z.B.:

sub Load ()
{

my $S e l f = sh i f t ;

. . .

$Se l f−>{ ’FQDN’ } = ’ f j o−o t r s . dts−on l i n e . net ’ ;
$Se l f−>{ ’AdminEmail ’ } = ’ f jo@dts . de ’ ;
$Se l f−>{ ’ Organizat ion ’ } = ’DTS Se rv i c e GmbH’ ;

. . .
}

89

8 OTRS 8.4 Modulprogrammierung

8.4. Modulprogrammierung

Die Perlmodule des OTRS stellen jeweils eine separate Klasse dar. Ausnahmen sind
lediglich einige Hilfsmodule, die nur eine spezielle Aufgabe übernehmen, wie z.B. Module
zum Generieren von Ticketnummern. Ein typisches Modul hat folgenden Aufbau:

#!/ usr / b in / p e r l

package Kernel : : System : : Demomodul ;

use s t r i c t ;
use warnings ;
use Kernel : : System : : MyModule ;
. . . we i t e r e Module e inb inden . . .

our $VERSION = ” 1 .0 ” ;

sub new ()
{

my $Type = sh i f t ;
my %Param = @ ;
my $S e l f = {} ;

bless ($Se l f , $Type) ;

adopt a l l prov ided o b j e c t s
foreach (keys %Param) {

$Se l f−>{$ } = $Param{ $ } ;
}

check needed s t u f f
foreach (qw(LogObject TimeObject Conf igObject)) {

i f (! $Se l f −>{$ }) {
die ”Got no $! ” ;

}
}

crea t e a d d i t i o n a l o b j e c t s
$Se l f−>{MyModuleObject} = Kernel : : System : : MyModule−>new(%Param) ;

return $S e l f ;
}

. . . Memberfunktionen . . .

1 ;

Neben den beiden Modulen strict und warnings müssen alle Packages bzw. Klassen
eingebunden werden, von denen das gezeigte Demomodul Objekte instanziert. Der Kon-
struktor new segnet bzw. klassifiziert zunächst den leeren Hash, auf den die Referenz
$Self verweist. Alle übergebenen Parameter werden in den (temporären) Hash %Param
übernommen und dann als Membervariablen im neuen Objekt gespeichert. In der Re-
gel enthalten die Parameter ausschliesslich Objekte und keine Werte wie Zeichenketten
o.ä. So erwartet der Konstruktor im Beispiel, dass er in den Parametern LogObject,
TimeObject und ConfigObject Instanzen der Klassen Kernel::System::Log,
Kernel::System::Time respektive Kernel::Config erhält. In Srinivasan (1997) (S. 136
- 137) bzw. in Srinivasan (1999) (S. 147 - 148) wird diese Art der Objektübergabe com-
position bzw. Komposition genannt. Sie kann als einfache und lockere Variante zu einer
rigiden Klassenhierarchie angesehen werden, die normalerweise in der objektorientierten

90

8 OTRS 8.5 Templates

Programmierung konstruiert wird. Welche Objekte einem Konstruktor übergeben wer-
den, kann nur durch Studium des Quellcodes von mitgelieferten Modulen und Skripten
festgestellt werden. So erzeugen die Module im Verzeichnis Kernel/System/Web, welche
für den Zugriff über die Weboberfläche verantwortlich sind, mindestens Instanzen der
Klassen

• Kernel::Config

• Kernel::System::Log

• Kernel::System::Main

• Kernel::System::Time

• Kernel::System::DB.

Per Konvention setzt sich der Parametername aus dem letzten Teil des Klassennamens
und dem String Object zusammen. Benötigt eine Instanz Objekte, die ihr nicht über-
geben werden, so müssen sie im Konstruktor angelegt werden, wie MyModuleObject im
Beispiel. Memberfunktionen erhalten die jeweilige Objektreferenz ($Self) als ersten Pa-
rameter und können so auf alle Objekte zugreifen. Scheitert ein Methodenaufruf, so wird
dies entweder durch den Rückgabewert von undef, was durch ein parameterloses return
geschieht, oder durch den sofortigen Abbruch mittels die() angezeigt. Zusätzlich kann
ein Logeintrag mit der Methode Log aus der Klasse Kernel::System::Log bzw. dessen
Instanz LogObject geschrieben werden.

8.5. Templates

Die Weboberfläche des OTRS basiert auf Templates. Diese Vorlagen liegen in Verzeich-
nissen unterhalb von Kernel/Output/HTML. Die Dateinamen müssen auf .dtl enden.
Jedes Template stellt nur einen Teil der fertigen Oberfläche dar. So existiert eine Vor-
lage nur für den Kopfbereich jeder Seite, eine Vorlage für die Navigationsleiste, eine
Vorlage zur Eingabe von Ticketdaten, eine Vorlage zur Anlage eines neuen Benutzers,
usw. Daher bestimmt jedes Frontendmodul (im Verzeichnis Kernel/Modules) die äussere
Struktur einer Seite selbst. Innerhalb der Templates können einzelne Bereiche markiert
werden und so in der Webseite gezielt ausgeblendet oder aber mehrfach verwendet wer-
den. Derartige Blöcke werden mit Kommentaren in HTML definiert, z.B.:

< !−− d t l : b l o c k : Hinweis −−>
<p>Hinweis : $Data{”Warnung”}</p>
< !−− d t l : b l o c k : Hinweis −−>

Die Klasse Kernel::Output::HTML::Layout stellt die Methode Block bereit, mit der
solche Blöcke wie dtl:block:Hinweis aktiviert werden können und mit der Variablen
wie $Data{"Warnung"} ein Wert zugewiesen wird:

$LayoutObject−>Block (
Name => ”Hinweis ” ,
Data => {

Warnung => ”Ein Fehler i s t au f g e t r e t en . ”
}

) ;

Somit wird in der Webseite ein Abschnitt mit dem entsprechenden Hinweis bzw. der
Warnung angezeigt. Jedes Frontendmodul muss eine Methode Run definieren. Diese baut
die Webseite auf und hat i.d.R. folgende Struktur:

sub Run ()
{

my $S e l f = sh i f t ;

91

8 OTRS 8.5 Templates

my $LayoutObject = $Se l f −>{LayoutObject } ;
my $ParamObject = $Se l f −>{ParamObject } ;
my $MyModuleObject = $Se l f −>{MyModuleObject } ;

f e t c h submi t ted form data
my %Data = () ;
foreach (qw(Subaction . . .)) {

$Data{ $ } = $ParamObject−>GetParam(Param => $) | | ”” ;
}

s t a r t HTML output
my $Output = $LayoutObject−>Header (T i t l e => ” Frontendtest ”) ;
$Output .= $LayoutObject−>NavigationBar () ;

eva l ua t e ac t i on
i f ($Data{Subaction } eq ” Spe ichern ”) {

$MyModuleObject−>Schre iben(%Data) ;
$Output .= $LayoutObject−>Block (

Name => ”Hinweis ” ,
Data => {

Warnung => ”Daten wurden g e sp e i c h e r t . ”
}

) ;
}
else

%Data = $MyModuleObject−>Lesen(%Data) ;
}

app ly temp la te
$Output .= $LayoutObject−>Output (

TemplateFi le => ”MyTemplate” ,
Data => \%Data

) ;

$Output .= $LayoutObject−>Footer () ;

return $Output ;
}

Die Objekte $LayoutObject, $ParamObject und $MyModuleObject werden dem Kon-
struktor des Frontendmoduls übergeben bzw. dieser muss sie anlegen. $ParamObject
ist eine Instanz von Kernel::System::Web::Request und verfügt über die Methode
GetParam, mit der etwaige Formulardaten abgerufen werden können. Per default liest
das Frontendmodul mit Hilfe eines Objektes der Businesslogik (hier: $MyModuleObject)
Werte aus der Datenbank und stellt sie dem Anwender dar. Werden jedoch Formularda-
ten übergeben (angezeigt durch den Parameter Subaction), speichert sie das Modul in
der Datenbank. Hält man die Namen von Datenbankfeldern und Formularparametern
identisch, so kann der Datenhash (%Data) ohne Modifikation als Argument für Methoden
der Businesslogik und für Layoutmethoden verwendet werden. Optionale Templateele-
mente wie z.B. Hinweis müssen vor dem finalen Aufruf der Methode Output per Block
aktiviert werden.

92

9 ENTWICKELTE MODULE

9. Entwickelte Module

9.1. DTSTicketNumber

9.1.1. Beschreibung

Das Modul DTSTicketNumber erzeugt Ticketnummern in einem eigenen, mindestens
neunstelligen Format. Es setzt sich zusammen aus der eindeutigen System-ID einer
OTRS-Instanz, dem Jahr, dem Monat, dem Tag und einem mindestens zweistelligen
Zähler, der für jedes neue Ticket inkrementiert, bei Beginn eines neuen Tages jedoch
auf Null gesetzt wird. Für das 18. Ticket am 22. Dezember 2007 ergibt sich für die
OTRS-Instanz mit der System-ID 3 daher die Ticketnummer 307122218. Ein derartiges
Modul muss die beiden Funktionen TicketCreateNumber, welche eine neue Ticketnum-
mer als Zeichenkette liefert, und GetTNByString implementieren, die aus einer Betreff-
zeile einer Email eine etwaig vorhandene Ticketnummer extrahiert und zurückliefert.
Da OTRS datenbankunabhängig ausgelegt ist, jedoch kein allgemeiner Standard zum
expliziten Sperren einer Datenbank bzw. Relation existiert, greifen Module zum Gene-
rieren von Ticketnummern auf die Textdatei var/log/TicketCounter.log zu, um so
mittels einer Dateisperre den Zähler atomar setzen zu können. Der Kern der Funktion
TicketCreateNumber hat folgenden Aufbau:

1 i f (! open(COUNTER, ”+<$CounterLog”)) {
2 # Tic k e t l o g e x i s t i e r t noch n i ch t
3 i f (! open(COUNTER, ”>>$CounterLog”)) {
4 # Fehler
5 }
6
7 close (COUNTER) ;
8
9 i f (! open(COUNTER, ”+<$CounterLog”)) {

10 # Fehler
11 }
12 }
13
14 i f (! f lock (COUNTER, 2)) {
15 # Fehler
16 }
17
18 # Zäh ler e i n l e s en
19 my $TicketNumber = <COUNTER>;
20
21 $TicketNumber++;
22
23 i f (! truncate (COUNTER, 0)) {
24 # Fehler
25 }
26
27 i f (! seek (COUNTER, 0 , 0)) {
28 # Fehler
29 }
30
31 print COUNTER $TicketNumber ;
32
33 close (COUNTER) ;

In Zeile 1 wird versucht, die Logdatei lesend und schreibend zu öffnen (Operator +<).
Schlägt dies fehl, wird die Datei nur zum Beschreiben geöffnet und der Dateideskriptor
an das Dateiende gesetzt (Operator >>). Somit ist in Zeile 9 sichergestellt, dass die Log-
datei existiert und kann erneut lesend und schreibend geöffnet werden. Der Aufruf von

93

9 ENTWICKELTE MODULE 9.1 DTSTicketNumber

flock stellt sicher, dass folgend nur ein OTRS-Prozess auf die Datei zugreift. Nach dem
Einlesen und Inkrementieren des Zählerstandes wird die Logdatei auf die Länge von null
Bytes gekürzt. Da der alte Zählerstand eingelesen wurde, steht der Filedeskriptor jedoch
noch auf dem Dateiende. Der Aufruf von seek in Zeile 27 setzt ihn an den Dateianfang.
Anschliessend wird der neue Zählerstand geschrieben. Der Aufruf von close schliesst
den Dateideskriptor und entfernt gleichzeitig die Dateisperre.

9.1.2. Konfigurationsparameter

DTSTicketNumber verwendet folgende Konfigurationsparameter:

SystemID die für jede OTRS-Instanz eindeutige numerische Kennung

Ticket::CounterLog vollständige Pfadangabe der Datei, die den Zählerstand der Tik-
ketnummer aufnimmt

Ticket::NumberGenerator::MinCounterSize Mindestgrösse des Tageszählers

Ticket::NumberGenerator::CheckSystemID gibt an, ob beim Erkennen einer Ticket-
nummer die System-ID beachtet werden soll

Ticket::Hook gibt das Prefix einer Ticketnummer an

Ticket::HookDivider gibt die Zeichenkette an, die zwischen Ticket::Hook und der
Ticketnummer steht; hat z.B. Ticket::Hook den Wert Ticket und
Ticket::HookDivider den Wert ”: ”, so wird für die Ticketnummer 307122218
die Zeichenkette Ticket: 307122218 als Betreffzeile einer Email verwendet.

94

9 ENTWICKELTE MODULE 9.2 DTSLib

9.2. DTSLib

9.2.1. Beschreibung

Das Modul DTSLib stellt drei häufig benötigte Dateisystemmethoden in der Klasse
Kernel::System::DTSLib bereit:

MakeDirectories erwartet den Parameter Directories, der eine Referenz auf ein Array
von Zeichenketten darstellen muss. Die Methode sieht jede Zeichenkette als Pfad
zu einem Verzeichnis an und erstellt dieses, falls es noch nicht existiert

WriteVersionedFile erwartet die Parameter FileName und Data. Die Methode schreibt
die übergebenen Daten sowohl in die durch FileName angegebene Datei als auch
in eine Sicherheitskopie, deren Name sich aus dem übergebenen Dateinamen, dem
aktuellen Datum sowie Benutzer-ID und Benutzername zusammensetzt

WriteFile erwartet die Parameter FileName und Data. Die Methode überschreibt die
spezifizierte Datei atomar mit den übergebenen Daten.

Der Kern der Methode WriteFile hat folgenden Aufbau:

1 my $TempFile = $Param{FileName} . ” . tmp” ;
2
3 i f (! open(FH, ”>$TempFile”)) {
4 # Fehler
5 }
6 i f (! f lock (FH, 2)) {
7 # Fehler
8 }
9 i f (! seek (FH, 0 , 0)) {

10 # Fehler
11 }
12
13 print FH ${$Param{Data }} ;
14 close (FH) ;
15
16 i f (! rename($TempFile , $Param{FileName })) {
17 # Fehler
18 }

Die Daten werden zunächst in eine temporäre Datei geschrieben. Durch den Aufruf
von flock in Zeile 6 ist gewährleistet, dass nur ein Prozess auf diese temporäre Datei
zugreift. Die Funktion seek setzt den Deskriptor an den Dateianfang. Die Systemroutine
rename zum Umbenennen einer Datei arbeitet atomar. Somit ist sichergestellt, dass die
vorhandene Datei bei Fehlern nicht gelöscht oder nur teilweise überschrieben wird.

9.2.2. Konfigurationsparameter

Das Modul DTSLib verwendet keine Konfigurationsparameter.

95

9 ENTWICKELTE MODULE 9.3 DTSFreetext

9.3. DTSFreetext

9.3.1. Beschreibung

Das Modul DTSFreetext versetzt den Administrator einer OTRS-Instanz in die Lage, für
jede Queue sogenannte Freitexte22 zu definieren. Diese Freitexte stellen Schlüssel-/Wer-
tepaare dar, die bei jedem Ticket ausgefüllt werden müssen. So lässt sich erzwingen,
dass bei jedem Ticket notwendige Daten wie z.B. die Seriennummer eines Gerätes vor-
handen sind. Zusätzlich lassen sich Auswahllisten definieren, aus denen beim Erstellen
eines Tickets eine Option ausgewählt werden muss. Die Verwendung solcher Freitext-

Abbildung 14: Freitextfelder beim Anlegen eines neuen Tickets

optionen ist jedoch global für eine Instanz anzusehen. OTRS bietet keine Möglichkeit,
sie gezielt pro Queue ein- oder auszublenden. Daher verwendet das Modul DTSFree-
text den Metawert ”(not used)”, wenn einer Queue keine expliziten Freitexte zugewiesen
sind. Zudem ist auch der Typ einer Freitextoption (Eingabefeld oder Dropdown-Menü)
global festgelegt und kann nicht pro Queue geändert werden. Das Modul besteht aus 5
Komponenten:

DTSFreetext.pgsql.sql beinhaltet die Relation dts queue2freetext, die jeder Queue
entsprechende Freitextoptionen zuordnet

DTSFreetext.pm abstrahiert den Zugriff auf die Relation dts queue2freetext und
stellt mit der Klasse Kernel::System::DTSFreetext die Methoden FreetextList
zum Auslesen, FreetextAdd zum Hinzufügen und FreetextModify zum Aktuali-
sieren von Freitextoptionen bereit

DTSFreetextAdmin.pm ist das Frontendmodul zum Modifizieren von Freitextoptionen

22Die Bezeichnung ist irreführend, wird jedoch so in der Dokumentation zu OTRS verwendet.

96

9 ENTWICKELTE MODULE 9.3 DTSFreetext

DTSFreetext.dtl stellt das Template für die Administrationsoberfläche dar

DTSFreetextAcl.pm ist das Kernstück dieses Moduls. OTRS ruft die in dieser Perldatei
definierte Methode Run beim Anlegen oder Modifizieren eines Tickets auf und über-
gibt ihr die ID der Queue und optional die ID des Tickets. Mit diesen Werten wird
die Tabelle dts queue2freetext befragt und für diese Queue vorgegebene Frei-
textoptionen in Form einer Access Control List (ACL) zurückgeliefert. Mit dieser
ACL überprüft OTRS, ob der Anwender die Freitextfelder ausfüllen muss.

Abbildung 15: Administration der Freitextfelder

9.3.2. Konfigurationsparameter

Damit Freitextoptionen angezeigt werden, müssen diese in einer der Konfigurationsdatei-
en wie Kernel/Config.pm aufgeführt werden. Um nicht bei jeder Änderung der Freitexte
die gesamte Konfiguration des OTRS neu schreiben zu müssen, wird die Perlfunktion do
verwendet. Sie bindet Dateien erst zur Laufzeit an ihrer Stelle ein:

$Se l f−>{”DTSFreetext : : TicketFreeText2 ”} = $Se l f −>{”Home” } .
”/var / d t s f r e e t e x t /TicketFreeText2 . txt ” ;

$Se l f−>{ ’ TicketFreeText2 ’ } = {
”TicketFreeText2 (not used) ” => ”TicketFreeText2 (not used) ” ,
do $Se l f−>{”DTSFreetext : : TicketFreeText2 ”}

} ;

97

9 ENTWICKELTE MODULE 9.3 DTSFreetext

Der Parameter DTSFreetext::TicketFreeText2 beinhaltet den Pfad zu einer Textda-
tei. Diese wird vom Modul DTSFreetext.pm bei jeder Änderung der Tabelle
dts queue2freetext neu geschrieben. Sie enthält den Rumpf eines Hashes, der Schlüs-
sel-/Wertepaare darstellt. Die Datei wird beim Abruf des Parameters TicketFreeText2
ausgewertet und formt so zusammen mit dem Defaulteintrag (not used) die möglichen
Freitextoptionen. Das Modul DTSFreetext greift ferner auf die folgenden Konfigurati-
onsparamter zu:

DTSFreetext::TicketFreeKey1, ... , DTSFreetext::TicketFreeKey16 müssen gültige
Dateipfade darstellen und sollten den Wert
$Self->{"Home"}."/var/dts freetext/TicketFreeKey1.txt" usw. aufweisen.
Sie beinhalten jeweils einen Hash und stellen die möglichen Namen für die erste,
zweite, usw. Freitextoption dar

DTSFreetext::TicketFreeText1, ... , DTSFreetext::TicketFreeText16 müssen gültige
Dateipfade darstellen und sollten den Wert
$Self->{"Home"}."/var/dts freetext/TicketFreeText1.txt" usw. aufweisen.
Sie beinhalten jeweils einen Hash und stellen die möglichen Werte für die erste,
zweite, usw. Freitextoption dar

TicketFreeKey1, ... , TicketFreeKey16 müssen anonyme Hashes darstellen. Sie bein-
halten die möglichen Namen für die erste, zweite, usw. Freitextoption und müssen
wie folgt definiert werden:

$Se l f−>{ ’ TicketFreeKey1 ’ } = {
”TicketFreeKey1 (not used) ” => ”TicketFreeKey1 (not used) ” ,
do $Se l f−>{”DTSFreetext : : TicketFreeKey1”}

} ;

TicketFreeText1, ... , TicketFreeText16 müssen anonyme Hashes darstellen. Sie bein-
halten die möglichen Werte für die erste, zweite, usw. Freitextoption und müssen
wie folgt definiert werden:

$Se l f−>{ ’ TicketFreeText1 ’ } = {
”TicketFreeText1 (not used) ” => ”TicketFreeText1 (not used) ” ,
do $Se l f−>{”DTSFreetext : : TicketFreeText1 ”}

} ;

Ferner muss die Datei Kernel/Config.pm um folgenden Eintrag ergänzt werden, damit
die Administrationsseite für die Freitextoptionen im Webfrontend angezeigt wird:

$Se l f−>{ ’ Frontend : : Module ’}−>{ ’ DTSFreetextAdmin ’ } = {
Group => [’ admin ’] ,
NavBarName => ”Admin” ,
NavBarModule => {

Name => ’DTS Freetext ’ ,
Block => ’ Block2 ’ ,
Pr io => 9999 ,
Module => ’ Kernel : : Output : :HTML: : NavBarModuleAdmin ’ ,

} ,
} ;

Ausserdem muss das Modul DTSFreetextAcl.pm entsprechend eingebunden werden:

$Se l f−>{”Ticket : : Acl : : Module”} = {
”DTSFreetextAcl” => {

Module => ”Kernel : : System : : Ticket : : DTSFreetextAcl” ,
}

} ;

98

9 ENTWICKELTE MODULE 9.4 DTSTheme

9.4. DTSTheme

9.4.1. Beschreibung

Das Modul DTSTheme ermöglicht es dem Administrator einer OTRS-Instanz, die Stan-
dardansicht der Weboberfläche zu kopieren und diese Kopie nach seinen Wünschen anzu-
passen. Es handelt sich dabei um einen triviales Textfeld, mit dem die Templates geladen,
bearbeitet und gespeichert werden können. Zusätzlich kann jedes dieser Themes mit ei-
nem eigenen Favicon versehen werden, welches in der Adressezeile eines Webbrowsers
angezeigt wird.

9.4.2. Konfigurationsparameter

Das Modul greift auf folgende Konfigurationsparameter zu:

DTSTheme::ImagesDirectory sollte den Wert
$Self->{"Home"}."/var/httpd/htdocs/images" aufweisen und gibt das Verzeich-
nis an, in dem Icons für Schaltflächen u.ä. liegen

DTSTheme::FaviconsDirectory sollte den Wert
$Self->{"Home"}."/var/httpd/htdocs/favicons" aufweisen und gibt das Ver-
zeichnis an, in dem die Favicons für die Weboberfläche liegen

DTSTheme::FaviconName sollte immer den Wert favicon.ico haben und gibt den
Dateinamen eines Favicons an.

Die Administrationsoberfläche des Modules DTSTheme muss wie folgt in die Konfigu-
ration in Kernel/Config.pm eingebunden werden:

$Se l f−>{ ’ Frontend : : Module ’}−>{ ’DTSThemeAdmin ’ } = {
Group => [’ admin ’] ,
NavBarName => ”Admin” ,
NavBarModule => {

Name => ’DTS Theme ’ ,
Block => ’ Block4 ’ ,
Pr io => 9999 ,
Module => ’ Kernel : : Output : :HTML: : NavBarModuleAdmin ’ ,

} ,
} ;

Ferner muss der Konstruktor der Klasse Kernel::Output::HTML::Layout erweitert wer-
den, damit auch Icons themebasiert angezeigt werden. Die Zeilen

de f i n e $Env{” Images”}
$Se l f−>{Images} = $Se l f −>{Conf igObject}−>Get (’ Frontend : : ImagePath ’) ;

müssen durch

de f i n e $Env{” Images”}
$Se l f−>{Images} = $Se l f −>{Conf igObject}−>Get (’ Frontend : : ImagePath ’) . \

$Theme . ”/” ;

ersetzt werden.

99

9 ENTWICKELTE MODULE 9.4 DTSTheme

Abbildung 16: Administration der Themes

Ein solches Theme kann entweder mit dem Modul DTSVirtualHost als Defaulttheme
für unterschiedliche Hosts eingesetzt werden oder von einem Anwender als persönliche
Voreinstellung ausgewählt werden. Das Modul besteht aus vier Komponenten:

DTSTheme.pm abstrahiert den Zugriff auf Templates und stellt in der Klasse
Kernel::System::DTSTheme die folgenden Methoden bereit:

WriteTemplate zum Abspeichern eines Templates
ListTemplates zum Lesen aller Templates für ein bestimmtes Theme
WriteFavicon zum Abspeichern eines Favicons
ThemeList zur Aufzählung aller Themes einer OTRS-Instanz
ThemeAdd zum Hinzufügen eines Themes
ThemeModify zum Abspeichern eines Themes.

DTSThemeAdmin.pm stellt das Frontendmodul zur Verwaltung der Themes dar

DTSTheme.dtl ist das Template für die Administrationsoberfläche (s. Abbildung 16)

DTSTemplateEditor.dtl stellt die Maske zur Bearbeitung der Templates eines Themes
dar (s. Abbildung 17)

Jedes veränderte Template wird als Sicherheitskopie auf dem Server hinterlegt. Zudem
ist es nicht möglich, die beiden mitgelieferten Themes Standard und Lite zu verändern.

100

9 ENTWICKELTE MODULE 9.4 DTSTheme

Abbildung 17: Modifikation eines Templates

101

9 ENTWICKELTE MODULE 9.5 DTSVirtualHost

9.5. DTSVirtualHost

9.5.1. Beschreibung

Mit dem Modul DTSVirtualHost kann eine OTRS-Instanz so eingerichtet werden, dass
sie unter verschiedenen Hostnamen erreichbar ist. Dies betrifft jedoch nur die Konfigu-
ration der OTRS-Instanz. Die Betriebsparameter des Apache Webservers o.ä. müssen
durch ein weiteres Modul wie z.B. DTSMaster angepasst werden. DTSVirtualHost be-
nötigt zum Betrieb das Modul DTSTheme, da jedem Hostnamen ein eigenes Theme
zugeordnet werden kann. Das Modul besteht aus vier Komponenten:

DTSVirtualHost.pgsql.sql definiert die Relation dts virtual host, in der alle Hostna-
men einer OTRS-Instanz hinterlegt sind

DTSVirtualHost.pm abstrahiert den Zugriff auf jene Relation und stellt mit der Klasse
Kernel::System::DTSVirtualHost folgende Methoden bereit:

VirtualHostList listet alle Hosts einer OTRS-Instanz auf
VirtualHostAdd fügt einer OTRS-Instanz einen neuen Hostnamen hinzu
VirtualHostModify aktualisiert einen Host

Für jeden Host müssen neben seinem Namen folgende Attribute hinterlegt werden:

AgentUrl beschreibt die Adresse, unter der sich Bearbeiter von Tickets einloggen können

CustomerUrl beschreibt die Adresse, unter der Kunden ihre Tickets einsehen können

PublicUrl beschreibt die Adresse, unter der der öffentliche FAQ-Bereich zu finden ist

SoapUrl beschreibt die Adresse, unter der die SOAP-Schnittstelle abrufbar ist

Secure / HTTPS gibt an, ob für den Virtualhost durch das Modul DTSMaster ein
SSL-Zertifikat erzeugt werden soll

IP Adresse Jeder per HTTPS geschützte Virtualhost muss unter einer eigenen IP Adres-
se abrufbar sein an. Auch bei Einsatz des Modules DTSMaster muss diese IP
Adresse manuell im Betriebssystem konfiguriert werden und ggf. vorgeschalteten
Firewalls oder Routern bekannt gemacht werden.

9.5.2. Konfigurationsparameter

Das Modul DTSVirtualHost greift auf zwei Konfigurationsparameter zu:

DTSVirtualHost::Host2ThemeFile gibt die Textdatei an, in der jedem Hostnamen der
Instanz ein Theme zugeordnet wird, und sollte den Wert
$Self->{"Home"}."/var/httpd/host2theme.txt" haben

DTSVirtualHost::SSLDirectory gibt das Verzeichnis an, in dem etwaige SSL-Schlüssel
und -Zertifikate hinterlegt werden, und sollte den Wert
$Self->{"Home"}."/var/httpd/etc" haben.

Analog zu DTSFreetext wird die Zuordnung von Hostnamen zu Themenamen als anony-
mer Hash in der Konfiguration erwartet. Daher kommt auch hier die Perlfunktion do
zum Einsatz und lädt zur Laufzeit die unter dem Parameter
DTSVirtualHost::Host2ThemeFile angegebene Textdatei:

$Se l f−>{ ’ DefaultTheme : : HostBased ’ } = {
do $Se l f−>{”DTSVirtualHost : : Host2ThemeFile”}

} ;

Die Konfigurationsoberfläche muss ebenfalls in die Datei Kernel/Config.pm eingebun-
den werden:

102

9 ENTWICKELTE MODULE 9.5 DTSVirtualHost

$Se l f−>{ ’ Frontend : : Module ’}−>{ ’ DTSVirtualHostAdmin ’ } = {
Group => [’ admin ’] ,
NavBarName => ”Admin” ,
NavBarModule => {

Name => ’DTS Vi r tua l Host ’ ,
Block => ’ Block3 ’ ,
Pr io => 9999 ,
Module => ’ Kernel : : Output : :HTML: : NavBarModuleAdmin ’ ,

} ,
} ;

103

9 ENTWICKELTE MODULE 9.5 DTSVirtualHost

Abbildung 18: Administration der Virtualhosts

104

9 ENTWICKELTE MODULE 9.6 DTSMaster

9.6. DTSMaster

9.6.1. Beschreibung

Das Paket DTSMaster dient zum Einrichten und Betrieb mehrerer OTRS-Instanzen auf
einer gemeinsamen Plattform. Die Grundidee liegt im Einsatz eines weiteren Apache-
Prozesses, der als Proxyserver betrieben wird. Er nimmt zunächst stellvertretend für alle
OTRS-Instanzen Anfragen entgegen und reicht diese dann aufgrund des angefragten
Hostnamens an den Webserver der jeweiligen OTRS-Instanz weiter. Anfragen an per
HTTPS geschützte OTRS-Instanzen beantwortet der entsprechende Webserver hingegen
direkt. DTSMaster greift nicht auf OTRS-Funktionen oder -Module zurück, da es nicht
im Kontext einer OTRS-Instanz läuft. Das Paket umfasst die folgenden Komponenten:

Abbildung 19: DTSMaster.pl zum Anlegen neuer OTRS-Instanzen

DTSMaster.pm ist die zentrale Bibliothek und stellt abstrahierende Funktionen zum
Zugriff auf die PostgreSQL-Datenbank, zum Anlegen von Betriebssystembenutzern
und -gruppen, und zum Anlegen23 einer neuen OTRS-Instanz bereit. Da sämtli-
che Konfigurationen auf XSLT-Templates basieren, verwendet DTSMaster.pm die
beiden Module XML::LibXML sowie XML::LibXSLT

DTSMaster.pl ist ein menügesteuertes Kommandozeilenprogramm zum Einrichten ei-
ner neuen OTRS-Instanz (s. Abbildung 19). Zur Darstellung der Menüs wird das
eingebettete Package DTSDisplay verwendet, welches wiederum das externe Modul
Dialog verwendet. DTSDisplay stellt einfache GUI-Elemente wie Eingabefehler
oder Hinweisboxen bereit

DTSMasterCron.pl wird periodisch über den Systemdienst cron ausgeführt und schreibt
Konfigurationsdateien für den lokalen Postfixserver und alle Apache-Instanzen (ins-

23Diese Funktion ist derzeit noch nicht vollständig, es fehlen das Befüllen der Datenbank und des
Homeverzeichnisses der neuen Instanz mit Hilfe einer als Vorlage dienenden, ungenutzten OTRS-
Installation.

105

9 ENTWICKELTE MODULE 9.6 DTSMaster

besondere den Proxyserver). Ausserdem legt dieses Skript SSL-Zertifikate und -
Schlüssel an. DTSMasterCron.pl greift auf DTSTheme und DTSVirtualHost von
jeder OTRS-Instanz zurück. Die jeweiligen Dienste werden nur neu gestartet, wenn
sich ihre Konfiguration geändert hat.

DTSMaster.sql beschreibt die Relation dts master, in der alle OTRS-Instanzen einer
Plattform verzeichnet sind

DTSWeb.pm stellt die Schnittstelle zwischen Webserver und OTRS dar. Es wird in
jeder OTRS-Instanz verwendet, um unnötige CGI-Aufrufe zu vermeiden

dtspreload.pl wird wie DTSWeb.pm in jeder OTRS-Instanz eingesetzt, um bei Start des
jeweiligen Webservers alle OTRS-Module zu laden.

Ferner beinhaltet das Paket DTSMaster ein angepasstes Startskript für den Apache
Webserver, welches im Gegensatz zum Original das Starten mit den Rechten eines un-
priviligierten Benutzers erlaubt.

106

9 ENTWICKELTE MODULE 9.7 DTSAddress

9.7. DTSAddress

9.7.1. Beschreibung

Das Modul DTSAddress dient zur vereinfachten Weiterleitung von Tickets an ande-
re OTRS-Instanzen. Es basiert auf den mitgelieferten Modulen AgentTicketForward
und AgentTicketEmail sowie deren Templates. Diese Module verlangen jedoch, dass
die Empfängeremailadresse entweder eingegeben oder aus einem Adressbuch heraus ge-
sucht werden muss. DTSAddress bietet dem Administrator einer OTRS-Instanz jedoch
die Möglichkeit, zentral ein Adressbuch zu pflegen. Dieses verknüpft die Namen von
OTRS-Instanzen, an die Tickets delegiert werden sollen, mit deren Emailadressen. In

Abbildung 20: Ticketansicht mit der Schaltfläche zum Delegieren

der Ticketansicht hat ein Bearbeiter somit die Möglichkeit, die registrierten Instanzen
ohne Umwege aus einem Dropdown-Menü auszuwählen. Das Modul besteht aus sechs
Komponenten:

DTSAddress.pgsql.sql stellt die Relation dts address bereit, die Namen von anderen
OTRS-Instanzen deren Emailadressen zuordnet

DTSAddress.pm abstrahiert den Zugriff auf diese Relation und stellt mit der Klasse
Kernel::System::DTSAddress folgende Methoden bereit:

AddressList zum Auslesen von OTRS-Instanzen und deren Emailadressen
AddressAdd zum Hinzufügen einer neuen OTRS-Instanz und deren Emailadresse
AddressModify zum Aktualisieren einer OTRS-Instanz und deren Emailadresse

DTSAddressAdmin.pm stellt das Frontendmodul zum Administrieren von OTRS-In-
stanzen und deren Emailadressen dar

DTSAddress.dtl beinhaltet das Template für die Administrationsoberfläche

AgentTicketDelegate.pm stellt das Frontendmodul zur Delegation von Tickets dar. Es
präsentiert dem Anwender eine Maske, in der das Zielsystem ausgewählt und der
Inhalt des Tickets vor dem Absenden bearbeitet werden kann, versendet das Ticket
und trägt eine entsprechende Notiz in der Tickethistorie ein

AgentTicketDelegate.dtl ist das Template für AgentTicketDelegate.pm.

107

9 ENTWICKELTE MODULE 9.7 DTSAddress

Abbildung 21: Ticketdelegation

9.7.2. Konfigurationsparameter

Das Modul DTSAddress greift auf einen eigenen Konfigurationshash unterhalb von
Ticket::Frontend::AgentTicketDelegate zu. Folgende Parameter werden dabei ab-
gefragt:

RequiredLock gibt an, ob das Ticket durch den Agenten gesperrt sein muss, um es
delegieren zu können

StateDefault gibt an, welcher Ticketstatus per default ausgewählt ist.

Zusätzlich greift das Modul auf folgende Parameter zu:

Ticket::Frontend::AccountTime bestimmt, ob eine Bearbeitungszeit eingegeben wer-
den muss

SpellChecker gibt an, ob die Rechtschreibprüfung angezeigt werden soll.

Zusätzlich muss das Administrationsfrontend DTSAddressAdmin in der Konfiguration
verankert werden, um es über die Weboberfläche aufrufen zu können:

$Se l f−>{ ’ Frontend : : Module ’}−>{ ’DTSAddressAdmin ’ } = {
Group => [’ admin ’] ,
NavBarName => ”Admin” ,
NavBarModule => {

Name => ’DTS Addresses ’ ,
Block => ’ Block4 ’ ,
Pr io => 9999 ,

108

9 ENTWICKELTE MODULE 9.7 DTSAddress

Abbildung 22: Adressbuch für Ticketdelegationen

Module => ’ Kernel : : Output : :HTML: : NavBarModuleAdmin ’ ,
} ,

} ;

Das Perlmodul AgentTicketDelegate.pm ist aufwendiger einzubinden. Zunächst muss
es als generelles Frontendmodul deklariert werden:

$Se l f−>{”Frontend : : Module”}−>{”AgentTicketDelegate ”} = {
’NavBarName ’ => ’ Ticket ’ ,
’ De s c r ip t i on ’ => ’ Ticket De legat ion ’ ,
’ T i t l e ’ => ’ De legate ’

} ;

Damit es in der Statusleiste in der Ticketansicht erscheint, muss es ferner als MenuModule
eingebunden werden:

$Se l f−>{”Ticket : : Frontend : : MenuModule”}−>{”999−Delegate ”} = {
”Action” => ”AgentTicketDelegate ” ,
”Module” => ”Kernel : : Output : :HTML: : TicketMenuGeneric ” ,
”Link” => ’ Action=AgentTicketDelegate&TicketID=$QData{”TicketID ”} ’ ,
” Desc r ip t i on ” => ”Delegate t i c k e t to another OTRS in s tance ” ,
”Name” => ”Delegate ” ,

} ;

Ausserdem müssen wie für jedes Ticketmodul die möglichen Statustypen vorgegeben
werden:

109

9 ENTWICKELTE MODULE 9.7 DTSAddress

$Se l f−>{”Ticket : : Frontend : : AgentTicketDelegate ”}−>{”StateType”} = \
[”open” , ” c l o s ed ”] ;

110

9 ENTWICKELTE MODULE 9.8 DTSSoapUser

9.8. DTSSoapUser

9.8.1. Beschreibung

Das Modul DTSSoapUser stellt eine SOAP-Schnittstelle und eine HTTP-GET-Schnitt-
stelle zum Anlegen von Kunden und Projekten aus anderen Buchhaltungs- und Projekt-
systemen wie dem Work@Web bereit. Die clientseitigen SOAP-Stubs können aus einer
automatisch erzeugten WSDL-Beschreibung generiert werden. Zudem kann der authen-
tifizierte Zugriff auf diese Schnittstellen auf bestimmte IP-Adressen beschränkt werden.
Das Modul besteht aus sieben Komponenten:

Abbildung 23: Anlage eines neuen SOAP-Benutzers

DTSSoapUser.pgsql.sql definiert 3 Relationen:
dts soap user führt Benutzernamen und Passwörter zur Authentifizierung an der

SOAP-Schnittstelle
dts soap user address referenziert die Benutzernamen aus dts soap user und ver-

bindet sie mit Netzadressen, aus denen ein SOAP-Benutzer sich verbinden darf
dts soap user method referenziert die Benutzernamen aus dts soap user und ver-

bindet sie mit Methodennamen, die ein SOAP-Benutzer aufrufen darf.
Mit diesem Datenmodell kann ein SOAP-Benutzer auf IP-Adressbereiche und Funk-
tionen eingeschränkt werden

DTSSoapUser.pm abstrahiert den Zugriff auf die o.g. Relationen und stellt in der
Klasse Kernel::System::DTSSoapUser die Methoden SoapUserList zum Abruf

111

9 ENTWICKELTE MODULE 9.8 DTSSoapUser

aller SOAP-Benutzer inklusive ihrer Rechte, SoapUserAdd zum Hinzufügen und
SoapUserModify zum Aktualisieren eines SOAP-Benutzers bereit. Zudem wird die
Methode IsSoapUserAllowed exportiert, die anhand der ihr übergebenen Parame-
ter Benutzername, Passwort, SOAP-Funktion und Clientadresse überprüft, ob der
SOAP-Benutzer zum Aufruf der Funktion berechtigt ist

DTSSoapUserAdmin.pm stellt das Frontendmodul zur Pflege von SOAP-Benutzern dar

DTSSoapUser.dtl ist das Template für den Administrationsbereich

DTSSoap.pm implementiert die eigentlichen SOAP-Funktionen und dient somit auch
zur Erstellung der WSDL-Beschreibung

DTSWsdl.pm erzeugt einerseits die WSDL-Beschreibung für das o.g. Perlmodul
DTSSoap.pm. Andererseits stellt es für das Frontendmodul DTSSoapUserAdmin.pm
die Methode MethodList bereit, die ein Array mit allen verfügbaren SOAP-Funk-
tionen liefert

InterfaceSoapUser.pm ist das Bindeglied zwischen Webserver und den SOAP-Funktio-
nen in DTSSoap.pm. Sie definiert die Klasse
Kernel::System::Web::InterfaceSoapUser. Bei einem HTTP-GET-Aufruf wer-
tet die Methode Run selbst alle übergebenen Parameter aus und ruft dann die
gewünschte Funktion in DTSSoap.pm auf. Ein POST-Aufruf, der einen SOAP-Re-
quest darstellt, wird von einer Instanz von SOAP::Transport::HTTP bearbeitet

Das Modul DTSSoap.pm definiert die Klasse Kernel::DTSSoap. Ihre Memberfunktionen
stellen die nach aussen freigegebenen SOAP-Funktionen dar. Sie haben folgende Struk-
tur:

=begin WSDL

DOC Dies i s t e i n e Test funkt ion
IN Username $ s t r i n g Benutzername
IN Password $ s t r i n g Passwort
OUT $s t r i n g Rückgabewert

=end WSDL

=cut

sub HelloWorld ()
{

my $S e l f = sh i f t ;
my $User = sh i f t ;
my $Pass = sh i f t ;

Username und Passwort pr ü fen

return SOAP: : Data−>type (” s t r i n g ”)
−>name(”HelloWorldReturn”)
−>value (” he l l o , world”) ;

}

Der vorangestellte POD-Block wird benötigt, um daraus eine WSDL-Beschreibung zu
erzeugen. Das Flag DOC zeigt dabei einen Kommentar an, der in das WSDL-Dokument
zwecks Lesbarkeit übernommen werden kann. IN und OUT bezeichnen die der Funktion
übergebenen bzw. die von ihr zurückgelieferten Datentypen, in diesem Falle einfache
Zeichenketten. Der Rückgabewert der Funktion HelloWorld ist zwar lediglich ein String,
muss aber aufwendig codiert werden, damit in Java geschriebene SOAP-Clients keinen

112

9 ENTWICKELTE MODULE 9.8 DTSSoapUser

Fehler werfen24. Das resultierende SOAP-Fragment sieht in diesem Falle wie folgt aus:

<HelloWorldResponse>
<HelloWorldReturn

x s i : t y p e=” x s d : s t r i n g ”>he l l o , world</HelloWorldReturn>
</HelloWorldResponse>

Wird hingegen die Zeichenkette direkt per return zurückgegeben, so ergibt sich folgendes
SOAP-Teilstück:

<HelloWorldResponse>
<s−gensym3

x s i : t y p e=” x s d : s t r i n g ”>he l l o , world</s−gensym3>
</HelloWorldResponse>

Die WSDL-Beschreibung wird on-the-fly vom Modul DTSWsdl.pm erzeugt. Es greift auf
das Package Pod::WSDL zurück:

my $WsdlObject = Pod : :WSDL−>new(
source => ”Kernel : : DTSSoap” ,
l o c a t i o n => ”http :// f j o−o t r s . dts−on l i n e . net / soap” ,
withDocumentation => 1 ,
use => $Pod : :WSDL: : LITERAL USE,
pre t ty => 1

) ;

my $WsdlDocument = $WsdlObject−>WSDL;

Der Konstruktor erwartet folgende Parameter:

source gibt das Modul an, für das die WSDL-Beschreibung erzeugt werden soll. Dieses
Modul sollte über entsprechend formatierte POD-Abschnitte verfügen

location gibt die Adresse an, unter der die SOAP-Funktionen abgerufen werden können

withDocumentation gibt an, ob die per DOC gekennzeichneten Dokumentationen der
POD-Blöcke in das WSDL-Dokument übernommen werden sollen

use zeigt die Serialisierungsart an. Per default wird RPC/encoded verwendet, im Beispiel
wird hingegen RPC/literal eingesetzt. Document/literal wird nicht unterstützt

pretty zeigt an, ob das WSDL-Dokument zwecks Lesbarkeit mit Whitespaces am Zei-
lenanfang formatiert werden soll.

Im Scalar $WsdlDocument steht somit die erzeugte WSDL-Beschreibung zur Verfügung.
Die Methode Run in der Klasse Kernel::System::Web::InterfaceSoapUser bzw. im

Perlmodul InterfaceSoapUser.pm weist folgende Struktur auf:

sub Run ()
{

my $RequestMethod = $ENV{REQUESTMETHOD} ;

i f ($RequestMethod eq ”GET”) {
Parameter ”Action” auswerten , dann entsprechende Methode
in DTSSoap .pm au f ru f en

}
else {

my $SoapCGIObject = SOAP: : Transport : :HTTP: : CGI−>new () ;
$SoapCGIObject−>d i spa t ch to (”Kernel : : DTSSoap”) ;
$SoapCGIObject−>handle () ;

}
}

24Dies herauszufinden hat einige Tage in Anspruch genommen und konnte nur mit Hilfe eines Netzwerk-
analyseprogrammes (http://www.wireshark.org) festgestellt werden.

113

http://www.wireshark.org

9 ENTWICKELTE MODULE 9.8 DTSSoapUser

In der Umgebungsvariablen $ENV{REQUEST METHOD} wird die Art des Webseitenaufru-
fes mitgeteilt. Findet ein HTTP-GET-Aufruf statt, ist dort der Wert GET hinterlegt.
In diesem Fall wertet die Funktion den Parameter Action aus und ruft die entspre-
chende Methode in DTSSoap.pm auf. Bei einem SOAP-Aufruf per HTTP-POST hin-
gegen wird eine Instanz von SOAP::Transport::HTTP::CGI verwendet. Diese benötigt
zuerst den Namen des Moduls, in dem sich die SOAP-Funktionen befinden, hier also
Kernel::DTSSoap. Anschliessend vollzieht die Methode handle prinzipiell die gleichen
Schritte wie der HTTP-GET-Zweig, indem die gewünschte Funktion aus der SOAP-
Anfrage extrahiert und aufgerufen wird.

Durch den Einsatz von WSDL können die bereitgestellten SOAP-Funktionen relativ
leicht in andere Projekte eingebunden werden (s. Abbildung 24). Anschliessend genügt

Abbildung 24: Import der SOAP-Funktionen in Microsoft Visual Studio

folgendes Minimalprogramm (hier in C#), um die Funktion CreateProject des OTRS
aufzurufen:
using System ;
using System . Co l l e c t i o n s . Generic ;
using System . Linq ;
using System . Text ;

namespace SoapTest
{

class Program
{

stat ic void Main(s t r i n g [] a rgs)
{

const St r ing User = ” t e s t ” ,
Pass = ” t e s t ” ,

114

9 ENTWICKELTE MODULE 9.8 DTSSoapUser

Projekt = ”Neues Pro jekt ” ,
Kunde = ”1111” ;

S t r ing Result ;
OTRS. KernelDTSSoapHandlerClient o t r s ;

o t r s = new OTRS. KernelDTSSoapHandlerClient () ;
Result = o t r s . CreatePro jec t (User , Pass , Projekt , Kunde) ;

System . Console . WriteLine (”Projektnummer : ” + Result) ;
System . Console . ReadLine () ;

}
}

}

Äquivalent ist folgendes Beispiel in PHP:

<?
$wsdl = ”http :// f j o−o t r s . dts−on l i n e . net / soap ?Action=WSDL&” .

”User=t e s t&Pass=t e s t ” ;
$o t r s = new SoapCl ient ($wsdl) ;
$nummer = $otrs−>CreatePro jec t (” t e s t ” , ” t e s t ” , ”Neues Pro jekt ” , ”1111”) ;

echo ”Projektnummer : ” . $nummer . ”\n” ;
?>

9.8.2. Konfigurationsparameter

In der Konfiguration muss lediglich das Frontendmodul DTSSoapUserAdmin registriert
werden:

$Se l f−>{ ’ Frontend : : Module ’}−>{ ’DTSSoapUserAdmin ’ } = {
Group => [’ admin ’] ,
NavBarName => ”Admin” ,
NavBarModule => {

Name => ’DTS SOAP User ’ ,
Block => ’ Block4 ’ ,
Pr io => 9999 ,
Module => ’ Kernel : : Output : :HTML: : NavBarModuleAdmin ’ ,

} ,
} ;

115

9 ENTWICKELTE MODULE 9.9 DTSNotifyAgentAsterisk

9.9. DTSNotifyAgentAsterisk

9.9.1. Beschreibung

Das Modul DTSNotifyAgentAsterisk kann einen Bearbeiter telefonisch auf ein eskalier-
tes Ticket hinweisen. Hierzu ist ein Asteriskserver25 notwendig, der skriptgesteuert über
sein Asterisk Manager Interface (AMI) Telefonate aufbauen kann. Zudem muss auf
dem Asteriskserver das Programm Festival26 zur Sprachsynthese installiert sein. Zum
Zugriff auf das Asterisk Manager Interface kommt seitens des OTRS das Perlmodul
Asterisk::Manager zum Einsatz. Es wird wie folgt verwendet:

use Aste r i s k : : Manager ;

my $AMIObject = Ast e r i s k : : Manager−>new () ;

se t connect ion parameters f o r ami s e r v e r
$AMIObject−>host (” a s t e r i s k . dts . de”) ;
$AMIObject−>port (5038) ;
$AMIObject−>user (” o t r s ”) ;
$AMIObject−>s e c r e t (”geheim”) ;

i f (! $AMIObject−>connect ()) {
Fehler

}

my %AMIResult = $AMIObject−>sendcommand(
Action => ” Or ig inate ” ,
Channel => ”CAPI/g0−9/052211011000” ,
Exten => ”123456” ,
P r i o r i t y => ”1” ,
Async => ”0” ,
Timeout => 15000 ,
Context => ” d e f au l t ” ,
Var iab le => ”TicketNumber=307122218 |Text=A t i c k e t i s e s c a l a t ed ”

) ;

Nachdem dem ein neues Objekt instanziert wurde, werden die Verbindungsparameter
gesetzt. Das AMI basiert auf einer herkömmlichen TCP-Verbindung, über die Befehle
im Klartext abgesetzt werden. Die Methode sendcommand kapselt sämtliche Protokoll-
details. Sie erwartet folgende Parameter:

Action gibt an, welche Aktion ausgeführt werden soll. Der Wert Originate weist den
Asteriskserver an, ein Gespräch zwischen zwei Teilnehmern aufzubauen

Channel stellt einen Endpunkt dieses Telefonates dar, nämlich denjenigen Teilnehmer,
der angerufen wird, hier die Telefonnummer 05221-101-1000. Diese soll per ISDN-
Karte bzw. CAPI-Schnittstelle angerufen werden

Exten stellt die Nummer des Anrufenden dar. Für diesen Fall muss der Asteriskserver
so konfiguriert werden, dass unter der Nummer 123456 das Programm Festival zu
erreichen ist

Priority gibt die Priorität dieses Telefonates an

Async sollte den Wert 1 haben, wenn der Aufruf von sendcommand sofort zurückkeh-
ren soll, 0, falls sendcommand erst zurückkehren soll, wenn das Telefonat zustande
gekommen ist

25http://www.asterisk.org
26http://www.cstr.ed.ac.uk/projects/festival/

116

http://www.asterisk.org
http://www.cstr.ed.ac.uk/projects/festival/

9 ENTWICKELTE MODULE 9.9 DTSNotifyAgentAsterisk

Timeout gibt die Zeit in Millisekunden an, die sendcommand wartet, bis das Telefonat
zustanden gekommen ist

Context gibt den Asterisk-Kontext (sprich: die ”Telefonie-Routingtabelle”) für diese
Verbindung an

Variable gibt eine Liste von per senkrechtem Strich getrennten Schlüssel-/Wertepaa-
ren an, die im Dialplan (sprich: in der Telefonie-Routingtabelle) als Variablen zur
Verfügung stehen. Diese Variablen werden durch den Dialplan dem Programm
text2wave übergeben, welches daraus Sprachsamples erzeugt und somit dem an-
gerufenen Bearbeiter über den Ticketstatus informiert.

Der Dialplan des Asteriskservers muss für dieses Beispiel um folgende Zeilen erweitert
werden27:

exten => 123456,1,Answer()
exten => 123456,n,Set(FileBase=/tmp/otrs-${TicketNumber})
exten => 123456,n,Set(FileType=ulaw)
exten => 123456,n,Set(FileName=${FileBase}.${FileType})
exten => 123456,n,System([-e \’${FileName}\’] || echo \’${Text}\’ |\

text2wave -otype \’${FileType}\’ -o \’${FileName}\’)
exten => 123456,n,Playback(${FileBase})
exten => 123456,n,Hangup()

DTSNotifyAgentAsterisk basiert zu grossen Teilen auf dem mitgelieferten Modul No-
tifyAgentGroupWithWritePermission, welches jedoch Emails an Bearbeiter sendet.

9.9.2. Konfigurationsparameter

Das Modul DTSNotifyAgentAsterisk wertet folgende Konfigurationsparameter aus:

DTSAsterisk::AMIHostname gibt den Hostnamen des Asteriskservers an
DTSAsterisk::AMIPort gibt den Port des Asterisk Manager Interfaces an
DTSAsterisk::AMIUsername gibt den Benutzer an, der über das AMI Gespräche auf-

bauen darf
DTSAsterisk::AMIPassword stellt das Passwort für den Benutzer dar
DTSAsterisk::Channel gibt das Device (ISDN-Karte o.ä.) an, über das die Bearbei-

ter telefonisch erreicht werden können, z.B. CAPI/g0-9/<PHONE NUMBER>, wobei
<PHONE NUMBER> durch die Rufnummer des jeweiligen Bearbeiters ersetzt wird

DTSAsterisk::Extension gibt die Durchwahl des Programmes text2wave aus dem Festi-
valpaket an

DTSAsterisk::Timeout gibt die Zeit in Millisekunden an, die maximal auf das Zustan-
dekommen des Gespräches gewartet werden soll

DTSAsterisk::Context gibt die Telefonie-Routingtabelle an
DTSAsterisk::FestivalTextKey spezifiziert den Namen der Variablen, unter der der Di-

alplan den zu synthetisierenden Text erwartet
DTSAsterisk::FestivalText gibt den Text an, der synthetisiert werden soll, z.B.

Attention! Attention! Ticket number <TICKET NUMBER> is escalated!, wo-
bei <TICKET NUMBER> durch die jeweilige Ticketnummer ersetzt wird

DTSAsterisk::FestivalTicketNumberKey stellt den Namen der Variablen dar, unter der
der Dialplan die Ticketnummer erwartet

27s. Ogris (2007)

117

A. Literatur

A. Literatur

[Ahmed 2006] Ahmed, Tarek: Pod::WSDL - Creates WSDL documents from (extended)
pod, Oktober 2006. – Manpage zum Perlmodul Pod::WSDL

[Almquist u. a. 2006] Almquist, Kenneth u. a.: sh – command interpreter (shell), Juli
2006. – Manpage zur sh

[Biron u. Malhotra 2004] Biron, Paul V. ; Malhotra, Ashok: XML Schema Part
2: Datatypes Second Edition. Version: October 2004. http://www.w3.org/TR/
xmlschema-2/, Abruf: 2008-01-06

[Butek 2005] Butek, Russell: Which style of WSDL should I use? Version:Mai 2005.
http://www.ibm.com/developerworks/webservices/library/ws-whichwsdl/,
Abruf: 2007-12-15

[Christiansen 2006] Christiansen, Tom: perltoot - Tom’s object-oriented tutorial for
perl, Januar 2006. – Manpage zu Perl 5.8.8

[Clark 1999] Clark, James: XSL Transformations (XSLT). Version: November 1999.
http://www.w3.org/TR/xslt/, Abruf: 2008-01-07

[Costales u. Allman 2002] Costales, Bryan ; Allman, Eric: sendmail. O’Reilly, 2002.
– ISBN 1–56592–839–3

[Diverse a] Diverse: OTRS API (HTML Developer API). http://dev.otrs.org/,
Abruf: 2007-12-15

[Diverse b] Diverse: Product Photos. http://h18000.www1.hp.com/products/
quickspecs/photos/photos.html, Abruf: 2007-12-15. – HP Product Bulletin

[Diverse c] Diverse: WSDL Tutorial. http://www.w3schools.com/wsdl/, Abruf: 2008-
01-07

[Diverse d] Diverse: XML Schema Tutorial. http://www.w3schools.com/schema/,
Abruf: 2008-01-06

[Diverse e] Diverse: XSLT Tutorial. http://www.w3schools.com/xsl/, Abruf: 2008-
01-06

[Diverse 2005a] Diverse: openssl - OpenSSL command line tool, Februar 2005. – Man-
page zu OpenSSL 0.9.7d

[Diverse 2005b] Diverse: tcsh - C shell with file name completion and command line
editing, März 2005. – Manpage zur tcsh 6.14.00

[Diverse 2006a] Diverse: perlfunc - Perl builtin functions, Januar 2006. – Manpage zu
Perl 5.8.8

[Diverse 2006b] Diverse: perlop - Perl operators and precedence, Januar 2006. – Man-
page zu Perl 5.8.8

[Diverse 2006c] Diverse: PostgreSQL 8.2.5 Documentation. (2006). http://www.
postgresql.org/docs/8.2/static/index.html, Abruf: 2008-01-01

[Diverse 2007a] Diverse: Berkeley Software Distribution. (2007), Dezember. http:
//de.wikipedia.org/wiki/Berkeley Software Distribution, Abruf: 2007-12-29

118

http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
http://www.ibm.com/developerworks/webservices/library/ws-whichwsdl/
http://www.w3.org/TR/xslt/
http://dev.otrs.org/
http://h18000.www1.hp.com/products/quickspecs/photos/photos.html
http://h18000.www1.hp.com/products/quickspecs/photos/photos.html
http://www.w3schools.com/wsdl/
http://www.w3schools.com/schema/
http://www.w3schools.com/xsl/
http://www.postgresql.org/docs/8.2/static/index.html
http://www.postgresql.org/docs/8.2/static/index.html
http://de.wikipedia.org/wiki/Berkeley_Software_Distribution
http://de.wikipedia.org/wiki/Berkeley_Software_Distribution

A. Literatur A. Literatur

[Diverse 2007b] Diverse: Dokumentation zum Apache HTTP Server Version 2.2. (2007).
http://httpd.apache.org/docs/2.2/, Abruf: 2008-01-01

[Diverse 2007c] Diverse: Extensible Markup Language. (2007), Dezember. http:
//de.wikipedia.org/wiki/XML, Abruf: 2007-12-17

[Diverse 2007d] Diverse: mod perl: Documentation. (2007), Dezember. http://perl.
apache.org/docs/index.html, Abruf: 2008-01-01

[Diverse 2007e] Diverse: Perl. (2007), Dezember. http://de.wikipedia.org/wiki/
Perl, Abruf: 2007-12-15

[Diverse 2007f] Diverse: Unix-Shell. (2007), Dezember. http://de.wikipedia.org/
wiki/Unix-Shell, Abruf: 2007-12-27

[Eckstein 2000] Eckstein, Robert: XML - kurz & gut. O’Reilly, 2000. – ISBN 3–89721–
219–6

[Kulchenko u. a. 2006] Kulchenko, Paul ; Ray, Randy J. ; Reese, Byrne: SOAP::Lite
- Perl’s Web Services Toolkit, August 2006. – Manpage zum Perlmodul SOAP::Lite

[Éric Lévénez 2007] Lévénez Éric: Unix History. Version: Dezember 2007. http:
//www.levenez.com/unix/, Abruf: 2007-12-29

[Martin u. a. 2000] Martin, Didier ; Birbeck, Mark ; Kay, Michael ; Loesgen, Brian ;
Pinnock, Jon ; Livingstone, Steven ; Stark, Peter ; Williams, Kevin ; Anderson,
Richard ; Mohr, Stephen ; Baliles, David ; Peat, Bruce ; Ozu, Nikola: Professional
XML. Wrox, 2000. – ISBN 1–861003–11–0

[Münz u. a. 2007] Münz, Stefan u. a.: SELFHTML 8.1.2. Version:März 2007. http:
//de.selfhtml.org/, Abruf: 2007-12-16

[Ogris 2007] Ogris, Felix J.: Asterisk - ein Überblick. Version: Januar 2007. http:
//www.ogris.de/docs/studienarbeit.pdf, Abruf: 2008-01-14

[Rowe u. Stonebraker 1987] Rowe, Lawrence A. ; Stonebraker, Michael R.: The
POSTGRES Data Model. Version: September 1987. http://s2k-ftp.cs.berkeley.
edu:8000/postgres/papers/ERL-M87-13.pdf, Abruf: 2008-01-01

[Schöpplein u. a. 2007a] Schöpplein, Christian ; Kammermeyer, Richard ; Rother,
Stefan ; Raith, Thomas ; Steinbild, Burchard ; Mindermann, André ; Edenhofer,
Martin ; Kuhn, Christopher ; Oschwald, Henning ; Hecht, Manuel ; Bakker, René
; Bauer, Bodo ; Böttcher, Hauke ; Bothe, Jens: OTRS 2.2 - Admin Manual.
Version: 2007. http://ftp.otrs.org/pub/otrs/doc/doc-admin/2.2/en/pdf/otrs
admin book.pdf, Abruf: 2007-12-15

[Schöpplein u. a. 2007b] Schöpplein, Christian ; Kammermeyer, Richard ; Ro-
ther, Stefan ; Raith, Thomas ; Steinbild, Burchard ; Mindermann, André
; Kuhn, Christopher ; Edenhofer, Martin: OTRS 2.2 - Developer Manual.
Version: 2007. http://ftp.otrs.org/pub/otrs/doc/doc-developer/2.2/en/pdf/
otrs developer book.pdf, Abruf: 2007-12-15

[Shohoud 2003] Shohoud, Yasser: RPC/Literal and Freedom of Choice. Version:April
2003. http://msdn2.microsoft.com/en-us/library/ms996466.aspx, Abruf: 2008-
01-08

119

http://httpd.apache.org/docs/2.2/
http://de.wikipedia.org/wiki/XML
http://de.wikipedia.org/wiki/XML
http://perl.apache.org/docs/index.html
http://perl.apache.org/docs/index.html
http://de.wikipedia.org/wiki/Perl
http://de.wikipedia.org/wiki/Perl
http://de.wikipedia.org/wiki/Unix-Shell
http://de.wikipedia.org/wiki/Unix-Shell
http://www.levenez.com/unix/
http://www.levenez.com/unix/
http://de.selfhtml.org/
http://de.selfhtml.org/
http://www.ogris.de/docs/studienarbeit.pdf
http://www.ogris.de/docs/studienarbeit.pdf
http://s2k-ftp.cs.berkeley.edu:8000/postgres/papers/ERL-M87-13.pdf
http://s2k-ftp.cs.berkeley.edu:8000/postgres/papers/ERL-M87-13.pdf
http://ftp.otrs.org/pub/otrs/doc/doc-admin/2.2/en/pdf/otrs_admin_book.pdf
http://ftp.otrs.org/pub/otrs/doc/doc-admin/2.2/en/pdf/otrs_admin_book.pdf
http://ftp.otrs.org/pub/otrs/doc/doc-developer/2.2/en/pdf/otrs_developer_book.pdf
http://ftp.otrs.org/pub/otrs/doc/doc-developer/2.2/en/pdf/otrs_developer_book.pdf
http://msdn2.microsoft.com/en-us/library/ms996466.aspx

A. Literatur A. Literatur

[Siever u. a. 1999] Siever, Ellen ; Spainhour, Stephen ; Patwardhan, Nathan: Perl
in a Nutshell. O’Reilly, 1999. – ISBN 1–56592–286–7

[Srinivasan 1997] Srinivasan, Sriram: Advanced Perl Programming. O’Reilly, 1997. –
ISBN 1–56591–220–4

[Srinivasan 1999] Srinivasan, Sriram: Fortgeschrittene Perl-Programmierung. O’Reilly,
1999. – ISBN 3–89721–107–6

[Thompson u. a. 2004] Thompson, Henry S. ; Beech, David ; Maloney, Murray ; Men-
delsohn, Noah: XML Schema Part 1: Structures Second Edition. Version: October
2004. http://www.w3.org/TR/xmlschema-1/, Abruf: 2008-01-06

[Venema u. a.] Venema, Wietse u. a.: Postfix Documentation. http://www.postfix.
org/documentation.html, Abruf: 2008-01-01

[Wall u. Burke 2006] Wall, Larry ; Burke, Sean M.: perlpod - the Plain Old Documen-
tation format, Januar 2006. – Manpage zu Perl 5.8.8

[Wall u. a. 2000] Wall, Larry ; Christiansen, Tom ; Orwant, Jon: Programming Perl.
O’Reilly, 2000. – ISBN 0–596–00027–8

[Weinelt] Weinelt, Jürgen: LaTeX-Befehlsreferenz, http://www.weinelt.de/latex/,
Abruf: 2007-12-17

120

http://www.w3.org/TR/xmlschema-1/
http://www.postfix.org/documentation.html
http://www.postfix.org/documentation.html
http://www.weinelt.de/latex/

B CD-ROM

B. CD-ROM

Die CD-ROM enthält alle im Rahmen dieser Diplomarbeit erstellten Programme und
Skripte sowie die vorliegende Arbeit im PDF-Format.

121

	1 Prolog
	2 Hardware
	2.1 Entwicklungssystem
	2.2 Produktivsystem

	3 Betriebssystem
	3.1 Einführung in FreeBSD
	3.2 Installation
	3.3 Starten von Systemdiensten
	3.4 Portssystem

	4 Anwendungsprogramme
	4.1 Apache
	4.1.1 Einleitung
	4.1.2 Installation
	4.1.3 Konfiguration
	4.1.4 mod_perl2

	4.2 PostgreSQL
	4.2.1 Einleitung
	4.2.2 Installation
	4.2.3 Konfiguration

	4.3 Postfix
	4.3.1 Einleitung
	4.3.2 Installation
	4.3.3 Konfiguration

	4.4 OpenSSL

	5 Programmiersprachen
	5.1 Perl
	5.1.1 Aufruf
	5.1.2 Variablen
	5.1.3 Gültigkeitsbereich
	5.1.4 Operatoren
	5.1.5 Reguläre Ausdrücke
	5.1.6 Kontrollstrukturen
	5.1.7 Funktionen
	5.1.8 Module und Packages
	5.1.9 Objektorientiertes Programmieren
	5.1.10 Pragmatisches Perl
	5.1.11 Plain Old Documentation

	5.2 Shellscripting

	6 Auszeichnungssprachen
	6.1 XML
	6.1.1 DTD
	6.1.2 Namensräume
	6.1.3 XML Schema

	6.2 XSLT
	6.3 SOAP
	6.4 WSDL

	7 Datenbankabfragesprachen
	7.1 SQL

	8 OTRS
	8.1 Installation
	8.2 Administration
	8.3 Module
	8.4 Modulprogrammierung
	8.5 Templates

	9 Entwickelte Module
	9.1 DTSTicketNumber
	9.1.1 Beschreibung
	9.1.2 Konfigurationsparameter

	9.2 DTSLib
	9.2.1 Beschreibung
	9.2.2 Konfigurationsparameter

	9.3 DTSFreetext
	9.3.1 Beschreibung
	9.3.2 Konfigurationsparameter

	9.4 DTSTheme
	9.4.1 Beschreibung
	9.4.2 Konfigurationsparameter

	9.5 DTSVirtualHost
	9.5.1 Beschreibung
	9.5.2 Konfigurationsparameter

	9.6 DTSMaster
	9.6.1 Beschreibung

	9.7 DTSAddress
	9.7.1 Beschreibung
	9.7.2 Konfigurationsparameter

	9.8 DTSSoapUser
	9.8.1 Beschreibung
	9.8.2 Konfigurationsparameter

	9.9 DTSNotifyAgentAsterisk
	9.9.1 Beschreibung
	9.9.2 Konfigurationsparameter

	A Literatur
	B CD-ROM

